私的AI研究会 > StarGAN
AI技術「GAN(敵対的生成ネットワーク)」を試してみる。「StarGAN-V2」で特徴操作・顔の合成をおこない顔を変化させる。
(py38) PS > conda info -e
(py38) PS C:\anaconda_win\workspace_py38> cd ..\work\ ← 今回のプロジェクト・フォルダ (py38) PS C:\anaconda_win\work> conda info -e # conda environments: # base C:\Users\(xxxxx)\anaconda3 : py37 C:\Users\(xxxxx)\anaconda3\envs\py37 py38 * C:\Users\(xxxxx)\anaconda3\envs\py38 ← 現在アクティブな仮想環境
(py38) PS > conda create -n py38_gan python=3.8
(py38) PS C:\anaconda_win\work> conda create -n py38a python=3.8 Collecting package metadata (current_repodata.json): done Solving environment: done ==> WARNING: A newer version of conda exists. <== current version: 4.13.0 latest version: 23.3.1 Please update conda by running $ conda update -n base -c defaults conda ## Package Plan ## environment location: C:\Users\izuts\anaconda3\envs\py38a added / updated specs: - python=3.8 The following packages will be downloaded: package | build ---------------------------|----------------- ca-certificates-2023.01.10 | haa95532_0 121 KB certifi-2022.12.7 | py38haa95532_0 148 KB libffi-3.4.2 | hd77b12b_6 109 KB openssl-1.1.1t | h2bbff1b_0 5.5 MB pip-23.0.1 | py38haa95532_0 2.7 MB python-3.8.16 | h6244533_3 18.9 MB setuptools-65.6.3 | py38haa95532_0 1.1 MB sqlite-3.41.1 | h2bbff1b_0 897 KB wheel-0.38.4 | py38haa95532_0 83 KB ------------------------------------------------------------ Total: 29.6 MB The following NEW packages will be INSTALLED: ca-certificates pkgs/main/win-64::ca-certificates-2023.01.10-haa95532_0 certifi pkgs/main/win-64::certifi-2022.12.7-py38haa95532_0 libffi pkgs/main/win-64::libffi-3.4.2-hd77b12b_6 openssl pkgs/main/win-64::openssl-1.1.1t-h2bbff1b_0 pip pkgs/main/win-64::pip-23.0.1-py38haa95532_0 python pkgs/main/win-64::python-3.8.16-h6244533_3 setuptools pkgs/main/win-64::setuptools-65.6.3-py38haa95532_0 sqlite pkgs/main/win-64::sqlite-3.41.1-h2bbff1b_0 vc pkgs/main/win-64::vc-14.2-h21ff451_1 vs2015_runtime pkgs/main/win-64::vs2015_runtime-14.27.29016-h5e58377_2 wheel pkgs/main/win-64::wheel-0.38.4-py38haa95532_0 wincertstore pkgs/main/win-64::wincertstore-0.2-py38haa95532_2 Proceed ([y]/n)? Downloading and Extracting Packages python-3.8.16 | 18.9 MB | #################################### | 100% wheel-0.38.4 | 83 KB | #################################### | 100% pip-23.0.1 | 2.7 MB | #################################### | 100% libffi-3.4.2 | 109 KB | #################################### | 100% sqlite-3.41.1 | 897 KB | #################################### | 100% ca-certificates-2023 | 121 KB | #################################### | 100% setuptools-65.6.3 | 1.1 MB | #################################### | 100% certifi-2022.12.7 | 148 KB | #################################### | 100% openssl-1.1.1t | 5.5 MB | #################################### | 100% Preparing transaction: done Verifying transaction: done Executing transaction: done # # To activate this environment, use # # $ conda activate py38a # # To deactivate an active environment, use # # $ conda deactivate
(py38) PS > conda activate py38_gan (py38_gan) PS > conda info -e
(py38) PS C:\anaconda_win\work> conda activate py38_gan (py38_gan) PS C:\anaconda_win\work> conda info -e # conda environments: # base C:\Users\(xxxxx)\anaconda3 : py37 C:\Users\(xxxxx)\anaconda3\envs\py37 py38 C:\Users\(xxxxx)\anaconda3\envs\py38 py38_gan * C:\Users\(xxxxx)\anaconda3\envs\py38_gan
(py38_gan) PS > cd /anaconda_win/work/ (py38_gan) PS > pip install -r requirements.txt
# Stable Diffusion & YOLOv7_OpenVINO openvino==2022.1.0 numpy==1.19.5 opencv-python==4.5.5.64 transformers==4.16.2 diffusers==0.2.4 tqdm==4.64.0 huggingface_hub==0.9.0 scipy==1.9.0 streamlit==1.12.0 watchdog==2.1.9 ftfy==6.1.1 PyMuPDF torchvision matplotlib seaborn onnx googletrans==4.0.0-rc1
(py38_gan) PS C:\anaconda_win\work> pip install -r requirements.txt Collecting openvino==2022.1.0 (from -r requirements.txt (line 2)) Using cached openvino-2022.1.0-7019-cp38-cp38-win_amd64.whl (22.9 MB) Collecting numpy==1.19.5 (from -r requirements.txt (line 3)) Using cached numpy-1.19.5-cp38-cp38-win_amd64.whl (13.3 MB) Collecting opencv-python==4.5.5.64 (from -r requirements.txt (line 4)) Using cached opencv_python-4.5.5.64-cp36-abi3-win_amd64.whl (35.4 MB) Collecting transformers==4.16.2 (from -r requirements.txt (line 5)) Using cached transformers-4.16.2-py3-none-any.whl (3.5 MB) Collecting diffusers==0.2.4 (from -r requirements.txt (line 6)) Using cached diffusers-0.2.4-py3-none-any.whl (112 kB) Collecting tqdm==4.64.0 (from -r requirements.txt (line 7)) Using cached tqdm-4.64.0-py2.py3-none-any.whl (78 kB) Collecting huggingface_hub==0.9.0 (from -r requirements.txt (line 8)) Using cached huggingface_hub-0.9.0-py3-none-any.whl (120 kB) Collecting scipy==1.9.0 (from -r requirements.txt (line 9)) Using cached scipy-1.9.0-cp38-cp38-win_amd64.whl (38.6 MB) Collecting streamlit==1.12.0 (from -r requirements.txt (line 10)) Using cached streamlit-1.12.0-py2.py3-none-any.whl (9.1 MB) Collecting watchdog==2.1.9 (from -r requirements.txt (line 11)) Using cached watchdog-2.1.9-py3-none-win_amd64.whl (78 kB) Collecting ftfy==6.1.1 (from -r requirements.txt (line 12)) Using cached ftfy-6.1.1-py3-none-any.whl (53 kB) Collecting PyMuPDF (from -r requirements.txt (line 13)) Obtaining dependency information for PyMuPDF from https://files.pythonhosted.org/packages/b6/a2/da9779b475b342ec4fa111c32f71d126a6427fb021b73901da1ffaf1aeca/PyMuPDF-1.23.4-cp38-none-win_amd64.whl.metadata Downloading PyMuPDF-1.23.4-cp38-none-win_amd64.whl.metadata (3.4 kB) Collecting torchvision (from -r requirements.txt (line 14)) Obtaining dependency information for torchvision from https://files.pythonhosted.org/packages/cc/1b/d781261269b3d0a5da35feda8e0b5ca7d25f5d08945bc6fba809e8cb7cbc/torchvision-0.16.0-cp38-cp38-win_amd64.whl.metadata Downloading torchvision-0.16.0-cp38-cp38-win_amd64.whl.metadata (6.6 kB) Collecting matplotlib (from -r requirements.txt (line 15)) Obtaining dependency information for matplotlib from https://files.pythonhosted.org/packages/a3/d2/4ce53fc825adfb38b97d91aa1bb99df7b10637c0044302807c00cdee3ad5/matplotlib-3.7.3-cp38-cp38-win_amd64.whl.metadata Downloading matplotlib-3.7.3-cp38-cp38-win_amd64.whl.metadata (5.8 kB) Collecting seaborn (from -r requirements.txt (line 16)) Obtaining dependency information for seaborn from https://files.pythonhosted.org/packages/7b/e5/83fcd7e9db036c179e0352bfcd20f81d728197a16f883e7b90307a88e65e/seaborn-0.13.0-py3-none-any.whl.metadata Downloading seaborn-0.13.0-py3-none-any.whl.metadata (5.3 kB) Collecting onnx (from -r requirements.txt (line 17)) Obtaining dependency information for onnx from https://files.pythonhosted.org/packages/3d/d7/264991bba735014a39418c116d063eef2ce9d1d24117a1e7caf3389676b5/onnx-1.14.1-cp38-cp38-win_amd64.whl.metadata Downloading onnx-1.14.1-cp38-cp38-win_amd64.whl.metadata (15 kB) Collecting googletrans==4.0.0-rc1 (from -r requirements.txt (line 18)) Using cached googletrans-4.0.0rc1-py3-none-any.whl Collecting filelock (from transformers==4.16.2->-r requirements.txt (line 5)) Obtaining dependency information for filelock from https://files.pythonhosted.org/packages/5e/5d/97afbafd9d584ff1b45fcb354a479a3609bd97f912f8f1f6c563cb1fae21/filelock-3.12.4-py3-none-any.whl.metadata Downloading filelock-3.12.4-py3-none-any.whl.metadata (2.8 kB) Collecting packaging>=20.0 (from transformers==4.16.2->-r requirements.txt (line 5)) Obtaining dependency information for packaging>=20.0 from https://files.pythonhosted.org/packages/ec/1a/610693ac4ee14fcdf2d9bf3c493370e4f2ef7ae2e19217d7a237ff42367d/packaging-23.2-py3-none-any.whl.metadata Downloading packaging-23.2-py3-none-any.whl.metadata (3.2 kB) Collecting pyyaml>=5.1 (from transformers==4.16.2->-r requirements.txt (line 5)) Obtaining dependency information for pyyaml>=5.1 from https://files.pythonhosted.org/packages/29/0f/9782fa5b10152abf033aec56a601177ead85ee03b57781f2d9fced09eefc/PyYAML-6.0.1-cp38-cp38-win_amd64.whl.metadata Downloading PyYAML-6.0.1-cp38-cp38-win_amd64.whl.metadata (2.1 kB) Collecting regex!=2019.12.17 (from transformers==4.16.2->-r requirements.txt (line 5)) Obtaining dependency information for regex!=2019.12.17 from https://files.pythonhosted.org/packages/7d/38/dcd673b81c2b4930bf39d970decff57ba48e0aee3028364897830ca9cc8e/regex-2023.10.3-cp38-cp38-win_amd64.whl.metadata Downloading regex-2023.10.3-cp38-cp38-win_amd64.whl.metadata (41 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 42.0/42.0 kB 2.0 MB/s eta 0:00:00 Collecting requests (from transformers==4.16.2->-r requirements.txt (line 5)) Obtaining dependency information for requests from https://files.pythonhosted.org/packages/70/8e/0e2d847013cb52cd35b38c009bb167a1a26b2ce6cd6965bf26b47bc0bf44/requests-2.31.0-py3-none-any.whl.metadata Downloading requests-2.31.0-py3-none-any.whl.metadata (4.6 kB) Collecting sacremoses (from transformers==4.16.2->-r requirements.txt (line 5)) Using cached sacremoses-0.0.53-py3-none-any.whl Collecting tokenizers!=0.11.3,>=0.10.1 (from transformers==4.16.2->-r requirements.txt (line 5)) Obtaining dependency information for tokenizers!=0.11.3,>=0.10.1 from https://files.pythonhosted.org/packages/c9/e6/200dc81fb3445f61bfed50e778794126d5d479560e7f92eaedf1969f6cd0/tokenizers-0.14.1-cp38-none-win_amd64.whl.metadata Downloading tokenizers-0.14.1-cp38-none-win_amd64.whl.metadata (6.8 kB) Collecting importlib-metadata (from diffusers==0.2.4->-r requirements.txt (line 6)) Obtaining dependency information for importlib-metadata from https://files.pythonhosted.org/packages/cc/37/db7ba97e676af155f5fcb1a35466f446eadc9104e25b83366e8088c9c926/importlib_metadata-6.8.0-py3-none-any.whl.metadata Downloading importlib_metadata-6.8.0-py3-none-any.whl.metadata (5.1 kB) Collecting torch>=1.4 (from diffusers==0.2.4->-r requirements.txt (line 6)) Obtaining dependency information for torch>=1.4 from https://files.pythonhosted.org/packages/2e/1b/f65591eecc739d926d041c2c9c9fbdf331f56deae6236241cecceebaa9ed/torch-2.1.0-cp38-cp38-win_amd64.whl.metadata Downloading torch-2.1.0-cp38-cp38-win_amd64.whl.metadata (24 kB) Collecting Pillow (from diffusers==0.2.4->-r requirements.txt (line 6)) Obtaining dependency information for Pillow from https://files.pythonhosted.org/packages/c9/b6/2f5559c68deb840715b8f8bf1f33c75e02339aa3e5725d82775b9325d4af/Pillow-10.0.1-cp38-cp38-win_amd64.whl.metadata Downloading Pillow-10.0.1-cp38-cp38-win_amd64.whl.metadata (9.6 kB) Requirement already satisfied: colorama in c:\users\izuts\appdata\roaming\python\python38\site-packages (from tqdm==4.64.0->-r requirements.txt (line 7)) (0.4.3) Collecting typing-extensions>=3.7.4.3 (from huggingface_hub==0.9.0->-r requirements.txt (line 8)) Obtaining dependency information for typing-extensions>=3.7.4.3 from https://files.pythonhosted.org/packages/24/21/7d397a4b7934ff4028987914ac1044d3b7d52712f30e2ac7a2ae5bc86dd0/typing_extensions-4.8.0-py3-none-any.whl.metadata Downloading typing_extensions-4.8.0-py3-none-any.whl.metadata (3.0 kB) Collecting altair>=3.2.0 (from streamlit==1.12.0->-r requirements.txt (line 10)) Obtaining dependency information for altair>=3.2.0 from https://files.pythonhosted.org/packages/17/16/b12fca347ff9d062e3c44ad9641d2ec50364570a059f3078ada3a5119d7a/altair-5.1.2-py3-none-any.whl.metadata Downloading altair-5.1.2-py3-none-any.whl.metadata (8.6 kB) Collecting blinker>=1.0.0 (from streamlit==1.12.0->-r requirements.txt (line 10)) Obtaining dependency information for blinker>=1.0.0 from https://files.pythonhosted.org/packages/bf/2b/11bcedb7dee4923253a4a21bae3be854bcc4f06295bd827756352016d97c/blinker-1.6.3-py3-none-any.whl.metadata Downloading blinker-1.6.3-py3-none-any.whl.metadata (1.9 kB) Collecting cachetools>=4.0 (from streamlit==1.12.0->-r requirements.txt (line 10)) Obtaining dependency information for cachetools>=4.0 from https://files.pythonhosted.org/packages/a9/c9/c8a7710f2cedcb1db9224fdd4d8307c9e48cbddc46c18b515fefc0f1abbe/cachetools-5.3.1-py3-none-any.whl.metadata Downloading cachetools-5.3.1-py3-none-any.whl.metadata (5.2 kB) Collecting click>=7.0 (from streamlit==1.12.0->-r requirements.txt (line 10)) Obtaining dependency information for click>=7.0 from https://files.pythonhosted.org/packages/00/2e/d53fa4befbf2cfa713304affc7ca780ce4fc1fd8710527771b58311a3229/click-8.1.7-py3-none-any.whl.metadata Downloading click-8.1.7-py3-none-any.whl.metadata (3.0 kB) Collecting pandas>=0.21.0 (from streamlit==1.12.0->-r requirements.txt (line 10)) Obtaining dependency information for pandas>=0.21.0 from https://files.pythonhosted.org/packages/c3/6c/ea362eef61f05553aaf1a24b3e96b2d0603f5dc71a3bd35688a24ed88843/pandas-2.0.3-cp38-cp38-win_amd64.whl.metadata Downloading pandas-2.0.3-cp38-cp38-win_amd64.whl.metadata (18 kB) Collecting protobuf<4,>=3.12 (from streamlit==1.12.0->-r requirements.txt (line 10)) Using cached protobuf-3.20.3-cp38-cp38-win_amd64.whl (904 kB) Collecting pyarrow>=4.0 (from streamlit==1.12.0->-r requirements.txt (line 10)) Obtaining dependency information for pyarrow>=4.0 from https://files.pythonhosted.org/packages/17/65/47c519fd198713631ca004e38ae48e244a4f4708ba32691caa54b36508a4/pyarrow-13.0.0-cp38-cp38-win_amd64.whl.metadata Downloading pyarrow-13.0.0-cp38-cp38-win_amd64.whl.metadata (3.1 kB) Collecting pydeck>=0.1.dev5 (from streamlit==1.12.0->-r requirements.txt (line 10)) Downloading pydeck-0.8.1b0-py2.py3-none-any.whl (4.8 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 4.8/4.8 MB 11.3 MB/s eta 0:00:00 Collecting pympler>=0.9 (from streamlit==1.12.0->-r requirements.txt (line 10)) Using cached Pympler-1.0.1-py3-none-any.whl (164 kB) Collecting python-dateutil (from streamlit==1.12.0->-r requirements.txt (line 10)) Using cached python_dateutil-2.8.2-py2.py3-none-any.whl (247 kB) Collecting rich>=10.11.0 (from streamlit==1.12.0->-r requirements.txt (line 10)) Obtaining dependency information for rich>=10.11.0 from https://files.pythonhosted.org/packages/be/2a/4e62ff633612f746f88618852a626bbe24226eba5e7ac90e91dcfd6a414e/rich-13.6.0-py3-none-any.whl.metadata Downloading rich-13.6.0-py3-none-any.whl.metadata (18 kB) Collecting semver (from streamlit==1.12.0->-r requirements.txt (line 10)) Obtaining dependency information for semver from https://files.pythonhosted.org/packages/d4/5d/f2b4fe45886238c405ad177ca43911cb1459d08003004da5c27495eb4216/semver-3.0.1-py3-none-any.whl.metadata Downloading semver-3.0.1-py3-none-any.whl.metadata (5.5 kB) Collecting toml (from streamlit==1.12.0->-r requirements.txt (line 10)) Using cached toml-0.10.2-py2.py3-none-any.whl (16 kB) Collecting tornado>=5.0 (from streamlit==1.12.0->-r requirements.txt (line 10)) Obtaining dependency information for tornado>=5.0 from https://files.pythonhosted.org/packages/19/07/65898bfa51d1a901f7798c36b3cf7c8d1df0c31a7178b79f75edf6d038cd/tornado-6.3.3-cp38-abi3-win_amd64.whl.metadata Downloading tornado-6.3.3-cp38-abi3-win_amd64.whl.metadata (2.6 kB) Collecting tzlocal>=1.1 (from streamlit==1.12.0->-r requirements.txt (line 10)) Obtaining dependency information for tzlocal>=1.1 from https://files.pythonhosted.org/packages/1c/af/343114b3ed9500b46108b56569b31a3108d3669d4fd063d9640e2c36cd57/tzlocal-5.1-py3-none-any.whl.metadata Downloading tzlocal-5.1-py3-none-any.whl.metadata (16 kB) Collecting validators>=0.2 (from streamlit==1.12.0->-r requirements.txt (line 10)) Obtaining dependency information for validators>=0.2 from https://files.pythonhosted.org/packages/3a/0c/785d317eea99c3739821718f118c70537639aa43f96bfa1d83a71f68eaf6/validators-0.22.0-py3-none-any.whl.metadata Downloading validators-0.22.0-py3-none-any.whl.metadata (4.7 kB) Collecting gitpython!=3.1.19 (from streamlit==1.12.0->-r requirements.txt (line 10)) Obtaining dependency information for gitpython!=3.1.19 from https://files.pythonhosted.org/packages/8a/7e/20f7e45878b5aed34320fbeeae8f78acc806e7bd708d00b1c6e64b016f5b/GitPython-3.1.37-py3-none-any.whl.metadata Downloading GitPython-3.1.37-py3-none-any.whl.metadata (12 kB) Collecting wcwidth>=0.2.5 (from ftfy==6.1.1->-r requirements.txt (line 12)) Obtaining dependency information for wcwidth>=0.2.5 from https://files.pythonhosted.org/packages/58/19/a9ce39f89cf58cf1e7ce01c8bb76ab7e2c7aadbc5a2136c3e192097344f5/wcwidth-0.2.8-py2.py3-none-any.whl.metadata Downloading wcwidth-0.2.8-py2.py3-none-any.whl.metadata (13 kB) Collecting httpx==0.13.3 (from googletrans==4.0.0-rc1->-r requirements.txt (line 18)) Using cached httpx-0.13.3-py3-none-any.whl (55 kB) Collecting certifi (from httpx==0.13.3->googletrans==4.0.0-rc1->-r requirements.txt (line 18)) Obtaining dependency information for certifi from https://files.pythonhosted.org/packages/4c/dd/2234eab22353ffc7d94e8d13177aaa050113286e93e7b40eae01fbf7c3d9/certifi-2023.7.22-py3-none-any.whl.metadata Downloading certifi-2023.7.22-py3-none-any.whl.metadata (2.2 kB) Collecting hstspreload (from httpx==0.13.3->googletrans==4.0.0-rc1->-r requirements.txt (line 18)) Using cached hstspreload-2023.1.1-py3-none-any.whl (1.5 MB) Collecting sniffio (from httpx==0.13.3->googletrans==4.0.0-rc1->-r requirements.txt (line 18)) Using cached sniffio-1.3.0-py3-none-any.whl (10 kB) Collecting chardet==3.* (from httpx==0.13.3->googletrans==4.0.0-rc1->-r requirements.txt (line 18)) Using cached chardet-3.0.4-py2.py3-none-any.whl (133 kB) Collecting idna==2.* (from httpx==0.13.3->googletrans==4.0.0-rc1->-r requirements.txt (line 18)) Using cached idna-2.10-py2.py3-none-any.whl (58 kB) Collecting rfc3986<2,>=1.3 (from httpx==0.13.3->googletrans==4.0.0-rc1->-r requirements.txt (line 18)) Using cached rfc3986-1.5.0-py2.py3-none-any.whl (31 kB) Collecting httpcore==0.9.* (from httpx==0.13.3->googletrans==4.0.0-rc1->-r requirements.txt (line 18)) Using cached httpcore-0.9.1-py3-none-any.whl (42 kB) Collecting h11<0.10,>=0.8 (from httpcore==0.9.*->httpx==0.13.3->googletrans==4.0.0-rc1->-r requirements.txt (line 18)) Using cached h11-0.9.0-py2.py3-none-any.whl (53 kB) Collecting h2==3.* (from httpcore==0.9.*->httpx==0.13.3->googletrans==4.0.0-rc1->-r requirements.txt (line 18)) Using cached h2-3.2.0-py2.py3-none-any.whl (65 kB) Collecting hyperframe<6,>=5.2.0 (from h2==3.*->httpcore==0.9.*->httpx==0.13.3->googletrans==4.0.0-rc1->-r requirements.txt (line 18)) Using cached hyperframe-5.2.0-py2.py3-none-any.whl (12 kB) Collecting hpack<4,>=3.0 (from h2==3.*->httpcore==0.9.*->httpx==0.13.3->googletrans==4.0.0-rc1->-r requirements.txt (line 18)) Using cached hpack-3.0.0-py2.py3-none-any.whl (38 kB) Collecting PyMuPDFb==1.23.3 (from PyMuPDF->-r requirements.txt (line 13)) Obtaining dependency information for PyMuPDFb==1.23.3 from https://files.pythonhosted.org/packages/0e/c8/d7e01004bf769c4f7f4e8585da8c8eab00960ef2d8d5f0e2e6599c579492/PyMuPDFb-1.23.3-py3-none-win_amd64.whl.metadata Downloading PyMuPDFb-1.23.3-py3-none-win_amd64.whl.metadata (1.3 kB) Collecting sympy (from torch>=1.4->diffusers==0.2.4->-r requirements.txt (line 6)) Downloading sympy-1.12-py3-none-any.whl (5.7 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.7/5.7 MB 26.3 MB/s eta 0:00:00 Collecting networkx (from torch>=1.4->diffusers==0.2.4->-r requirements.txt (line 6)) Using cached networkx-3.1-py3-none-any.whl (2.1 MB) Collecting jinja2 (from torch>=1.4->diffusers==0.2.4->-r requirements.txt (line 6)) Using cached Jinja2-3.1.2-py3-none-any.whl (133 kB) Collecting fsspec (from torch>=1.4->diffusers==0.2.4->-r requirements.txt (line 6)) Obtaining dependency information for fsspec from https://files.pythonhosted.org/packages/fe/d3/e1aa96437d944fbb9cc95d0316e25583886e9cd9e6adc07baad943524eda/fsspec-2023.9.2-py3-none-any.whl.metadata Downloading fsspec-2023.9.2-py3-none-any.whl.metadata (6.7 kB) Collecting contourpy>=1.0.1 (from matplotlib->-r requirements.txt (line 15)) Obtaining dependency information for contourpy>=1.0.1 from https://files.pythonhosted.org/packages/96/1b/b05cd42c8d21767a0488b883b38658fb9a45f86c293b7b42521a8113dc5d/contourpy-1.1.1-cp38-cp38-win_amd64.whl.metadata Downloading contourpy-1.1.1-cp38-cp38-win_amd64.whl.metadata (5.9 kB) Collecting cycler>=0.10 (from matplotlib->-r requirements.txt (line 15)) Obtaining dependency information for cycler>=0.10 from https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl.metadata Downloading cycler-0.12.1-py3-none-any.whl.metadata (3.8 kB) Collecting fonttools>=4.22.0 (from matplotlib->-r requirements.txt (line 15)) Obtaining dependency information for fonttools>=4.22.0 from https://files.pythonhosted.org/packages/07/5c/839661b533bcb74599a809acf34edad3931bef7eec255564ae143776b866/fonttools-4.43.1-cp38-cp38-win_amd64.whl.metadata Downloading fonttools-4.43.1-cp38-cp38-win_amd64.whl.metadata (155 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 155.5/155.5 kB ? eta 0:00:00 Collecting kiwisolver>=1.0.1 (from matplotlib->-r requirements.txt (line 15)) Obtaining dependency information for kiwisolver>=1.0.1 from https://files.pythonhosted.org/packages/1e/93/9dc4ca136063707f12eb56f4c8c294a940dd23f8512834573b201df83f88/kiwisolver-1.4.5-cp38-cp38-win_amd64.whl.metadata Downloading kiwisolver-1.4.5-cp38-cp38-win_amd64.whl.metadata (6.5 kB) INFO: pip is looking at multiple versions of matplotlib to determine which version is compatible with other requirements. This could take a while. Collecting matplotlib (from -r requirements.txt (line 15)) Obtaining dependency information for matplotlib from https://files.pythonhosted.org/packages/6d/f8/ff4acac6ea3f896146fd2a9f76dafb7c36973f2a329cae1d60a7c7252395/matplotlib-3.7.2-cp38-cp38-win_amd64.whl.metadata Downloading matplotlib-3.7.2-cp38-cp38-win_amd64.whl.metadata (5.8 kB) Using cached matplotlib-3.7.1-cp38-cp38-win_amd64.whl (7.6 MB) Using cached matplotlib-3.7.0-cp38-cp38-win_amd64.whl (7.7 MB) Using cached matplotlib-3.6.3-cp38-cp38-win_amd64.whl (7.2 MB) Collecting pyparsing>=2.2.1 (from matplotlib->-r requirements.txt (line 15)) Obtaining dependency information for pyparsing>=2.2.1 from https://files.pythonhosted.org/packages/39/92/8486ede85fcc088f1b3dba4ce92dd29d126fd96b0008ea213167940a2475/pyparsing-3.1.1-py3-none-any.whl.metadata Downloading pyparsing-3.1.1-py3-none-any.whl.metadata (5.1 kB) INFO: pip is looking at multiple versions of seaborn to determine which version is compatible with other requirements. This could take a while. Collecting seaborn (from -r requirements.txt (line 16)) Using cached seaborn-0.12.2-py3-none-any.whl (293 kB) Collecting jsonschema>=3.0 (from altair>=3.2.0->streamlit==1.12.0->-r requirements.txt (line 10)) Obtaining dependency information for jsonschema>=3.0 from https://files.pythonhosted.org/packages/0f/bf/a84bc75f069f4f156e1c0d9892fb7325945106c6ecaad9f29d24360872af/jsonschema-4.19.1-py3-none-any.whl.metadata Downloading jsonschema-4.19.1-py3-none-any.whl.metadata (7.9 kB) Collecting toolz (from altair>=3.2.0->streamlit==1.12.0->-r requirements.txt (line 10)) Using cached toolz-0.12.0-py3-none-any.whl (55 kB) Collecting gitdb<5,>=4.0.1 (from gitpython!=3.1.19->streamlit==1.12.0->-r requirements.txt (line 10)) Using cached gitdb-4.0.10-py3-none-any.whl (62 kB) Collecting zipp>=0.5 (from importlib-metadata->diffusers==0.2.4->-r requirements.txt (line 6)) Obtaining dependency information for zipp>=0.5 from https://files.pythonhosted.org/packages/d9/66/48866fc6b158c81cc2bfecc04c480f105c6040e8b077bc54c634b4a67926/zipp-3.17.0-py3-none-any.whl.metadata Downloading zipp-3.17.0-py3-none-any.whl.metadata (3.7 kB) Collecting pytz>=2020.1 (from pandas>=0.21.0->streamlit==1.12.0->-r requirements.txt (line 10)) Obtaining dependency information for pytz>=2020.1 from https://files.pythonhosted.org/packages/32/4d/aaf7eff5deb402fd9a24a1449a8119f00d74ae9c2efa79f8ef9994261fc2/pytz-2023.3.post1-py2.py3-none-any.whl.metadata Downloading pytz-2023.3.post1-py2.py3-none-any.whl.metadata (22 kB) Collecting tzdata>=2022.1 (from pandas>=0.21.0->streamlit==1.12.0->-r requirements.txt (line 10)) Using cached tzdata-2023.3-py2.py3-none-any.whl (341 kB) INFO: pip is looking at multiple versions of pandas to determine which version is compatible with other requirements. This could take a while. Collecting pandas>=0.21.0 (from streamlit==1.12.0->-r requirements.txt (line 10)) Obtaining dependency information for pandas>=0.21.0 from https://files.pythonhosted.org/packages/f0/95/361d9726b57b44c1d8dce070930c2322a70157f697ecdcca13f4388247ab/pandas-2.0.2-cp38-cp38-win_amd64.whl.metadata Downloading pandas-2.0.2-cp38-cp38-win_amd64.whl.metadata (18 kB) Downloading pandas-2.0.1-cp38-cp38-win_amd64.whl (10.8 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 10.8/10.8 MB 28.5 MB/s eta 0:00:00 Using cached pandas-2.0.0-cp38-cp38-win_amd64.whl (11.3 MB) Using cached pandas-1.5.3-cp38-cp38-win_amd64.whl (11.0 MB) Using cached pandas-1.5.2-cp38-cp38-win_amd64.whl (11.0 MB) Using cached pandas-1.5.1-cp38-cp38-win_amd64.whl (11.0 MB) Using cached pandas-1.5.0-cp38-cp38-win_amd64.whl (11.0 MB) INFO: pip is still looking at multiple versions of pandas to determine which version is compatible with other requirements. This could take a while. Using cached pandas-1.4.4-cp38-cp38-win_amd64.whl (10.6 MB) Requirement already satisfied: six>=1.5 in c:\users\izuts\appdata\roaming\python\python38\site-packages (from python-dateutil->streamlit==1.12.0->-r requirements.txt (line 10)) (1.14.0) Collecting charset-normalizer<4,>=2 (from requests->transformers==4.16.2->-r requirements.txt (line 5)) Obtaining dependency information for charset-normalizer<4,>=2 from https://files.pythonhosted.org/packages/b7/5b/591989e2d3f79cafbcbd3c739677f55a966aa4d32542e15029431df8cbb0/charset_normalizer-3.3.0-cp38-cp38-win_amd64.whl.metadata Downloading charset_normalizer-3.3.0-cp38-cp38-win_amd64.whl.metadata (33 kB) Collecting urllib3<3,>=1.21.1 (from requests->transformers==4.16.2->-r requirements.txt (line 5)) Obtaining dependency information for urllib3<3,>=1.21.1 from https://files.pythonhosted.org/packages/26/40/9957270221b6d3e9a3b92fdfba80dd5c9661ff45a664b47edd5d00f707f5/urllib3-2.0.6-py3-none-any.whl.metadata Downloading urllib3-2.0.6-py3-none-any.whl.metadata (6.6 kB) Collecting markdown-it-py>=2.2.0 (from rich>=10.11.0->streamlit==1.12.0->-r requirements.txt (line 10)) Obtaining dependency information for markdown-it-py>=2.2.0 from https://files.pythonhosted.org/packages/42/d7/1ec15b46af6af88f19b8e5ffea08fa375d433c998b8a7639e76935c14f1f/markdown_it_py-3.0.0-py3-none-any.whl.metadata Downloading markdown_it_py-3.0.0-py3-none-any.whl.metadata (6.9 kB) Collecting pygments<3.0.0,>=2.13.0 (from rich>=10.11.0->streamlit==1.12.0->-r requirements.txt (line 10)) Obtaining dependency information for pygments<3.0.0,>=2.13.0 from https://files.pythonhosted.org/packages/43/88/29adf0b44ba6ac85045e63734ae0997d3c58d8b1a91c914d240828d0d73d/Pygments-2.16.1-py3-none-any.whl.metadata Downloading Pygments-2.16.1-py3-none-any.whl.metadata (2.5 kB) INFO: pip is looking at multiple versions of tokenizers to determine which version is compatible with other requirements. This could take a while. Collecting tokenizers!=0.11.3,>=0.10.1 (from transformers==4.16.2->-r requirements.txt (line 5)) Obtaining dependency information for tokenizers!=0.11.3,>=0.10.1 from https://files.pythonhosted.org/packages/1a/b3/257c747399f2b411e09e35aae495eff1ee4652ffc8edd4ebf4b9a9e87b99/tokenizers-0.14.0-cp38-none-win_amd64.whl.metadata Downloading tokenizers-0.14.0-cp38-none-win_amd64.whl.metadata (6.8 kB) Using cached tokenizers-0.13.3-cp38-cp38-win_amd64.whl (3.5 MB) Collecting backports.zoneinfo (from tzlocal>=1.1->streamlit==1.12.0->-r requirements.txt (line 10)) Using cached backports.zoneinfo-0.2.1-cp38-cp38-win_amd64.whl (38 kB) Collecting joblib (from sacremoses->transformers==4.16.2->-r requirements.txt (line 5)) Obtaining dependency information for joblib from https://files.pythonhosted.org/packages/10/40/d551139c85db202f1f384ba8bcf96aca2f329440a844f924c8a0040b6d02/joblib-1.3.2-py3-none-any.whl.metadata Downloading joblib-1.3.2-py3-none-any.whl.metadata (5.4 kB) Collecting smmap<6,>=3.0.1 (from gitdb<5,>=4.0.1->gitpython!=3.1.19->streamlit==1.12.0->-r requirements.txt (line 10)) Obtaining dependency information for smmap<6,>=3.0.1 from https://files.pythonhosted.org/packages/a7/a5/10f97f73544edcdef54409f1d839f6049a0d79df68adbc1ceb24d1aaca42/smmap-5.0.1-py3-none-any.whl.metadata Downloading smmap-5.0.1-py3-none-any.whl.metadata (4.3 kB) Collecting MarkupSafe>=2.0 (from jinja2->torch>=1.4->diffusers==0.2.4->-r requirements.txt (line 6)) Obtaining dependency information for MarkupSafe>=2.0 from https://files.pythonhosted.org/packages/74/a3/54fc60ee2da3ab6d68b1b2daf4897297c597840212ee126e68a4eb89fcd7/MarkupSafe-2.1.3-cp38-cp38-win_amd64.whl.metadata Downloading MarkupSafe-2.1.3-cp38-cp38-win_amd64.whl.metadata (3.1 kB) Collecting attrs>=22.2.0 (from jsonschema>=3.0->altair>=3.2.0->streamlit==1.12.0->-r requirements.txt (line 10)) Downloading attrs-23.1.0-py3-none-any.whl (61 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 61.2/61.2 kB ? eta 0:00:00 Collecting importlib-resources>=1.4.0 (from jsonschema>=3.0->altair>=3.2.0->streamlit==1.12.0->-r requirements.txt (line 10)) Obtaining dependency information for importlib-resources>=1.4.0 from https://files.pythonhosted.org/packages/65/6e/09d8816b5cb7a4006ef8ad1717a2703ad9f331dae9717d9f22488a2d6469/importlib_resources-6.1.0-py3-none-any.whl.metadata Downloading importlib_resources-6.1.0-py3-none-any.whl.metadata (4.1 kB) Collecting jsonschema-specifications>=2023.03.6 (from jsonschema>=3.0->altair>=3.2.0->streamlit==1.12.0->-r requirements.txt (line 10)) Obtaining dependency information for jsonschema-specifications>=2023.03.6 from https://files.pythonhosted.org/packages/1c/24/83349ac2189cc2435e84da3f69ba3c97314d3c0622628e55171c6798ed80/jsonschema_specifications-2023.7.1-py3-none-any.whl.metadata Downloading jsonschema_specifications-2023.7.1-py3-none-any.whl.metadata (2.8 kB) Collecting pkgutil-resolve-name>=1.3.10 (from jsonschema>=3.0->altair>=3.2.0->streamlit==1.12.0->-r requirements.txt (line 10)) Using cached pkgutil_resolve_name-1.3.10-py3-none-any.whl (4.7 kB) Collecting referencing>=0.28.4 (from jsonschema>=3.0->altair>=3.2.0->streamlit==1.12.0->-r requirements.txt (line 10)) Obtaining dependency information for referencing>=0.28.4 from https://files.pythonhosted.org/packages/be/8e/56d6f1e2d591f4d6cbcba446cac4a1b0dc4f584537e2071d9bcee8eeab6b/referencing-0.30.2-py3-none-any.whl.metadata Downloading referencing-0.30.2-py3-none-any.whl.metadata (2.6 kB) Collecting rpds-py>=0.7.1 (from jsonschema>=3.0->altair>=3.2.0->streamlit==1.12.0->-r requirements.txt (line 10)) Obtaining dependency information for rpds-py>=0.7.1 from https://files.pythonhosted.org/packages/47/e1/4505a5c7ebd9d8ae047caa6d01e6428bee7310f88d177bdf3ef85a2f4b84/rpds_py-0.10.4-cp38-none-win_amd64.whl.metadata Downloading rpds_py-0.10.4-cp38-none-win_amd64.whl.metadata (3.8 kB) Collecting mdurl~=0.1 (from markdown-it-py>=2.2.0->rich>=10.11.0->streamlit==1.12.0->-r requirements.txt (line 10)) Using cached mdurl-0.1.2-py3-none-any.whl (10.0 kB) Collecting mpmath>=0.19 (from sympy->torch>=1.4->diffusers==0.2.4->-r requirements.txt (line 6)) Using cached mpmath-1.3.0-py3-none-any.whl (536 kB) Downloading PyMuPDF-1.23.4-cp38-none-win_amd64.whl (3.5 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.5/3.5 MB 54.7 MB/s eta 0:00:00 Downloading PyMuPDFb-1.23.3-py3-none-win_amd64.whl (24.4 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 24.4/24.4 MB 21.1 MB/s eta 0:00:00 Downloading torchvision-0.16.0-cp38-cp38-win_amd64.whl (1.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.3/1.3 MB 20.2 MB/s eta 0:00:00 Downloading torch-2.1.0-cp38-cp38-win_amd64.whl (192.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 192.3/192.3 MB 3.1 MB/s eta 0:00:00 Downloading onnx-1.14.1-cp38-cp38-win_amd64.whl (13.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 13.3/13.3 MB 28.5 MB/s eta 0:00:00 Downloading altair-5.1.2-py3-none-any.whl (516 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 516.2/516.2 kB 33.7 MB/s eta 0:00:00 Downloading blinker-1.6.3-py3-none-any.whl (13 kB) Downloading cachetools-5.3.1-py3-none-any.whl (9.3 kB) Downloading click-8.1.7-py3-none-any.whl (97 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 97.9/97.9 kB ? eta 0:00:00 Downloading contourpy-1.1.1-cp38-cp38-win_amd64.whl (477 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 477.9/477.9 kB 31.2 MB/s eta 0:00:00 Downloading cycler-0.12.1-py3-none-any.whl (8.3 kB) Downloading fonttools-4.43.1-cp38-cp38-win_amd64.whl (1.5 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.5/1.5 MB 13.4 MB/s eta 0:00:00 Downloading GitPython-3.1.37-py3-none-any.whl (190 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 190.0/190.0 kB ? eta 0:00:00 Downloading importlib_metadata-6.8.0-py3-none-any.whl (22 kB) Downloading kiwisolver-1.4.5-cp38-cp38-win_amd64.whl (56 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 56.2/56.2 kB 2.9 MB/s eta 0:00:00 Downloading packaging-23.2-py3-none-any.whl (53 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 53.0/53.0 kB ? eta 0:00:00 Downloading Pillow-10.0.1-cp38-cp38-win_amd64.whl (2.5 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.5/2.5 MB 15.9 MB/s eta 0:00:00 Downloading pyarrow-13.0.0-cp38-cp38-win_amd64.whl (24.4 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 24.4/24.4 MB 17.2 MB/s eta 0:00:00 Downloading pyparsing-3.1.1-py3-none-any.whl (103 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 103.1/103.1 kB ? eta 0:00:00 Downloading PyYAML-6.0.1-cp38-cp38-win_amd64.whl (157 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 157.3/157.3 kB ? eta 0:00:00 Downloading regex-2023.10.3-cp38-cp38-win_amd64.whl (269 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 269.6/269.6 kB 17.3 MB/s eta 0:00:00 Downloading requests-2.31.0-py3-none-any.whl (62 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 62.6/62.6 kB 3.5 MB/s eta 0:00:00 Downloading rich-13.6.0-py3-none-any.whl (239 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 239.8/239.8 kB ? eta 0:00:00 Downloading tornado-6.3.3-cp38-abi3-win_amd64.whl (429 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 429.2/429.2 kB 26.2 MB/s eta 0:00:00 Downloading typing_extensions-4.8.0-py3-none-any.whl (31 kB) Downloading tzlocal-5.1-py3-none-any.whl (21 kB) Downloading validators-0.22.0-py3-none-any.whl (26 kB) Downloading wcwidth-0.2.8-py2.py3-none-any.whl (31 kB) Downloading filelock-3.12.4-py3-none-any.whl (11 kB) Downloading semver-3.0.1-py3-none-any.whl (17 kB) Downloading certifi-2023.7.22-py3-none-any.whl (158 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 158.3/158.3 kB ? eta 0:00:00 Downloading charset_normalizer-3.3.0-cp38-cp38-win_amd64.whl (97 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 97.6/97.6 kB ? eta 0:00:00 Downloading jsonschema-4.19.1-py3-none-any.whl (83 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 83.3/83.3 kB ? eta 0:00:00 Downloading markdown_it_py-3.0.0-py3-none-any.whl (87 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 87.5/87.5 kB ? eta 0:00:00 Downloading Pygments-2.16.1-py3-none-any.whl (1.2 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.2/1.2 MB 37.2 MB/s eta 0:00:00 Downloading pytz-2023.3.post1-py2.py3-none-any.whl (502 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 502.5/502.5 kB 32.8 MB/s eta 0:00:00 Downloading urllib3-2.0.6-py3-none-any.whl (123 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 123.8/123.8 kB 7.6 MB/s eta 0:00:00 Downloading zipp-3.17.0-py3-none-any.whl (7.4 kB) Downloading fsspec-2023.9.2-py3-none-any.whl (173 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 173.4/173.4 kB ? eta 0:00:00 Downloading joblib-1.3.2-py3-none-any.whl (302 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 302.2/302.2 kB 9.4 MB/s eta 0:00:00 Downloading importlib_resources-6.1.0-py3-none-any.whl (33 kB) Downloading jsonschema_specifications-2023.7.1-py3-none-any.whl (17 kB) Downloading MarkupSafe-2.1.3-cp38-cp38-win_amd64.whl (17 kB) Downloading referencing-0.30.2-py3-none-any.whl (25 kB) Downloading rpds_py-0.10.4-cp38-none-win_amd64.whl (185 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 185.7/185.7 kB 108.0 kB/s eta 0:00:00 Downloading smmap-5.0.1-py3-none-any.whl (24 kB) Installing collected packages: wcwidth, tokenizers, rfc3986, pytz, mpmath, hyperframe, hpack, h11, chardet, zipp, watchdog, validators, urllib3, tzdata, typing-extensions, tqdm, tornado, toolz, toml, sympy, sniffio, smmap, semver, rpds-py, regex, pyyaml, python-dateutil, pyparsing, PyMuPDFb, pympler, pygments, protobuf, pkgutil-resolve-name, Pillow, packaging, numpy, networkx, mdurl, MarkupSafe, kiwisolver, joblib, idna, hstspreload, h2, ftfy, fsspec, fonttools, filelock, cycler, click, charset-normalizer, certifi, cachetools, blinker, backports.zoneinfo, attrs, tzlocal, scipy, sacremoses, requests, referencing, PyMuPDF, pyarrow, pandas, openvino, opencv-python, onnx, markdown-it-py, jinja2, importlib-resources, importlib-metadata, httpcore, gitdb, contourpy, torch, rich, pydeck, matplotlib, jsonschema-specifications, huggingface_hub, httpx, gitpython, transformers, torchvision, seaborn, jsonschema, googletrans, diffusers, altair, streamlit Successfully installed MarkupSafe-2.1.3 Pillow-10.0.1 PyMuPDF-1.23.4 PyMuPDFb-1.23.3 altair-5.1.2 attrs-23.1.0 backports.zoneinfo-0.2.1 blinker-1.6.3 cachetools-5.3.1 certifi-2023.7.22 chardet-3.0.4 charset-normalizer-3.3.0 click-8.1.7 contourpy-1.1.1 cycler-0.12.1 diffusers-0.2.4 filelock-3.12.4 fonttools-4.43.1 fsspec-2023.9.2 ftfy-6.1.1 gitdb-4.0.10 gitpython-3.1.37 googletrans-4.0.0rc1 h11-0.9.0 h2-3.2.0 hpack-3.0.0 hstspreload-2023.1.1 httpcore-0.9.1 httpx-0.13.3 huggingface_hub-0.9.0 hyperframe-5.2.0 idna-2.10 importlib-metadata-6.8.0 importlib-resources-6.1.0 jinja2-3.1.2 joblib-1.3.2 jsonschema-4.19.1 jsonschema-specifications-2023.7.1 kiwisolver-1.4.5 markdown-it-py-3.0.0 matplotlib-3.6.3 mdurl-0.1.2 mpmath-1.3.0 networkx-3.1 numpy-1.19.5 onnx-1.14.1 opencv-python-4.5.5.64 openvino-2022.1.0 packaging-23.2 pandas-1.4.4 pkgutil-resolve-name-1.3.10 protobuf-3.20.3 pyarrow-13.0.0 pydeck-0.8.1b0 pygments-2.16.1 pympler-1.0.1 pyparsing-3.1.1 python-dateutil-2.8.2 pytz-2023.3.post1 pyyaml-6.0.1 referencing-0.30.2 regex-2023.10.3 requests-2.31.0 rfc3986-1.5.0 rich-13.6.0 rpds-py-0.10.4 sacremoses-0.0.53 scipy-1.9.0 seaborn-0.12.2 semver-3.0.1 smmap-5.0.1 sniffio-1.3.0 streamlit-1.12.0 sympy-1.12 tokenizers-0.13.3 toml-0.10.2 toolz-0.12.0 torch-2.1.0 torchvision-0.16.0 tornado-6.3.3 tqdm-4.64.0 transformers-4.16.2 typing-extensions-4.8.0 tzdata-2023.3 tzlocal-5.1 urllib3-2.0.6 validators-0.22.0 watchdog-2.1.9 wcwidth-0.2.8 zipp-3.17.0
(py38_gan) PS > cd /anaconda_win/work/ (py38_gan) PS > git clone https://github.com/clovaai/stargan-v2.git
(py38_gan) PS C:\anaconda_win\work> git clone https://github.com/clovaai/stargan-v2.git Cloning into 'stargan-v2'... remote: Enumerating objects: 269, done. remote: Total 269 (delta 0), reused 0 (delta 0), pack-reused 269 Receiving objects: 100% (269/269), 38.86 MiB | 19.21 MiB/s, done. Resolving deltas: 100% (60/60), done.
(py38_gan) PS > pip install munch scikit-image ffmpeg
(py38_gan) PS C:\anaconda_win\work> pip install munch scikit-image ffmpeg Collecting munch Obtaining dependency information for munch from https://files.pythonhosted.org/packages/56/b3/7c69b37f03260a061883bec0e7b05be7117c1b1c85f5212c72c8c2bc3c8c/munch-4.0.0-py2.py3-none-any.whl.metadata Using cached munch-4.0.0-py2.py3-none-any.whl.metadata (5.9 kB) Collecting scikit-image Obtaining dependency information for scikit-image from https://files.pythonhosted.org/packages/d7/d1/a4c715ad640c9eb0daaa77c4ce561b06e086bec44cbc79083e3548b00b76/scikit_image-0.21.0-cp38-cp38-win_amd64.whl.metadata Using cached scikit_image-0.21.0-cp38-cp38-win_amd64.whl.metadata (14 kB) Collecting ffmpeg Using cached ffmpeg-1.4-py3-none-any.whl Collecting numpy>=1.21.1 (from scikit-image) Obtaining dependency information for numpy>=1.21.1 from https://files.pythonhosted.org/packages/69/65/0d47953afa0ad569d12de5f65d964321c208492064c38fe3b0b9744f8d44/numpy-1.24.4-cp38-cp38-win_amd64.whl.metadata Using cached numpy-1.24.4-cp38-cp38-win_amd64.whl.metadata (5.6 kB) Requirement already satisfied: scipy>=1.8 in c:\users\izuts\anaconda3\envs\py38_gan\lib\site-packages (from scikit-image) (1.9.0) Requirement already satisfied: networkx>=2.8 in c:\users\izuts\anaconda3\envs\py38_gan\lib\site-packages (from scikit-image) (3.1) Requirement already satisfied: pillow>=9.0.1 in c:\users\izuts\anaconda3\envs\py38_gan\lib\site-packages (from scikit-image) (10.0.1) Collecting imageio>=2.27 (from scikit-image) Obtaining dependency information for imageio>=2.27 from https://files.pythonhosted.org/packages/f6/37/e21e6f38b93878ba80302e95b8ccd4718d80f0c53055ccae343e606b1e2d/imageio-2.31.5-py3-none-any.whl.metadata Using cached imageio-2.31.5-py3-none-any.whl.metadata (4.6 kB) Collecting tifffile>=2022.8.12 (from scikit-image) Obtaining dependency information for tifffile>=2022.8.12 from https://files.pythonhosted.org/packages/06/a3/68d17088a4f09565bc7341fd20490da8191ec4cddde479daaabbe07bb603/tifffile-2023.7.10-py3-none-any.whl.metadata Using cached tifffile-2023.7.10-py3-none-any.whl.metadata (31 kB) Collecting PyWavelets>=1.1.1 (from scikit-image) Using cached PyWavelets-1.4.1-cp38-cp38-win_amd64.whl (4.2 MB) Requirement already satisfied: packaging>=21 in c:\users\izuts\anaconda3\envs\py38_gan\lib\site-packages (from scikit-image) (23.2) Collecting lazy_loader>=0.2 (from scikit-image) Obtaining dependency information for lazy_loader>=0.2 from https://files.pythonhosted.org/packages/a1/c3/65b3814e155836acacf720e5be3b5757130346670ac454fee29d3eda1381/lazy_loader-0.3-py3-none-any.whl.metadata Using cached lazy_loader-0.3-py3-none-any.whl.metadata (4.3 kB) Using cached munch-4.0.0-py2.py3-none-any.whl (9.9 kB) Using cached scikit_image-0.21.0-cp38-cp38-win_amd64.whl (22.7 MB) Using cached imageio-2.31.5-py3-none-any.whl (313 kB) Using cached lazy_loader-0.3-py3-none-any.whl (9.1 kB) Using cached numpy-1.24.4-cp38-cp38-win_amd64.whl (14.9 MB) Using cached tifffile-2023.7.10-py3-none-any.whl (220 kB) Installing collected packages: ffmpeg, numpy, munch, lazy_loader, tifffile, PyWavelets, imageio, scikit-image Attempting uninstall: numpy Found existing installation: numpy 1.19.5 Uninstalling numpy-1.19.5: Successfully uninstalled numpy-1.19.5 ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. openvino 2022.1.0 requires numpy<1.20,>=1.16.6, but you have numpy 1.24.4 which is incompatible. Successfully installed PyWavelets-1.4.1 ffmpeg-1.4 imageio-2.31.5 lazy_loader-0.3 munch-4.0.0 numpy-1.24.4 scikit-image-0.21.0 tifffile-2023.7.10
conda activate py38_gan
(py38_gan) PS > cd /anaconda_win/work/stargan-v2/
(py38_gan) PS > python main.py --mode sample --num_domains 2 --resume_iter 100000 --w_hpf 1 --checkpoint_dir expr/checkpoints/celeba_hq --result_dir expr/results/celeba_hq --src_dir assets/representative/celeba_hq/src_0 --ref_dir assets/representative/celeba_hq/ref_0
(py38_gan) PS C:\anaconda_win\work\stargan-v2> python main.py --mode sample --num_domains 2 --resume_iter 100000 --w_hpf 1 --checkpoint_dir expr/checkpoints/celeba_hq --result_dir expr/results/celeba_hq --src_dir assets/representative/celeba_hq/src_0 --ref_dir assets/representative/celeba_hq/ref_0 Namespace(batch_size=8, beta1=0.0, beta2=0.99, checkpoint_dir='expr/checkpoints/celeba_hq', ds_iter=100000, eval_dir='expr/eval', eval_every=50000, f_lr=1e-06, hidden_dim=512, img_size=256, inp_dir='assets/representative/custom/female', lambda_cyc=1, lambda_ds=1, lambda_reg=1, lambda_sty=1, latent_dim=16, lm_path='expr/checkpoints/celeba_lm_mean.npz', lr=0.0001, mode='sample', num_domains=2, num_outs_per_domain=10, num_workers=4, out_dir='assets/representative/celeba_hq/src/female', print_every=10, randcrop_prob=0.5, ref_dir='assets/representative/celeba_hq/ref_0', result_dir='expr/results/celeba_hq', resume_iter=100000, sample_dir='expr/samples', sample_every=5000, save_every=10000, seed=777, src_dir='assets/representative/celeba_hq/src_0', style_dim=64, total_iters=100000, train_img_dir='data/celeba_hq/train', val_batch_size=32, val_img_dir='data/celeba_hq/val', w_hpf=1.0, weight_decay=0.0001, wing_path='expr/checkpoints/wing.ckpt') Number of parameters of generator: 43467395 Number of parameters of mapping_network: 2438272 Number of parameters of style_encoder: 20916928 Number of parameters of discriminator: 20852290 Number of parameters of fan: 6333603 Initializing generator... Initializing mapping_network... Initializing style_encoder... Initializing discriminator... Preparing DataLoader for the generation phase... Preparing DataLoader for the generation phase... Loading checkpoint from expr/checkpoints/celeba_hq\100000_nets_ema.ckpt... Working on expr/results/celeba_hq\reference.jpg...
(py38_gan) PS > python main2.py --mode sample --num_domains 2 --resume_iter 100000 --w_hpf 1 --checkpoint_dir expr/checkpoints/celeba_hq --result_dir expr/results/celeba_hq --src_dir assets/representative/celeba_hq/src_0 --ref_dir assets/representative/celeba_hq/ref_0
# -*- coding: utf-8 -*- ##------------------------------------------ ## StarGAN v2 Ver 0.01 ## Generating interpolation image ## ## 2023.10.02 Masahiro Izutsu ##------------------------------------------ ## Official StarGAN v2 https://github.com/clovaai/stargan-v2 ## ## main2.py (original: main.py) """ StarGAN v2 Copyright (c) 2020-present NAVER Corp. This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. """ import os import argparse from munch import Munch from torch.backends import cudnn import torch from core.data_loader import get_train_loader from core.data_loader import get_test_loader from core.solver import Solver def str2bool(v): return v.lower() in ('true') def subdirs(dname): return [d for d in os.listdir(dname) if os.path.isdir(os.path.join(dname, d))] def frame_resize(image, maxsize): import cv2 if maxsize > 300: img_h, img_w = image.shape[:2] if (img_w > img_h): if (img_w > maxsize): height = round(img_h * (maxsize / img_w)) image = cv2.resize(image, dsize = (maxsize, height)) else: if (img_h > maxsize): width = round(img_w * (maxsize / img_h)) image = cv2.resize(image, dsize = (width, maxsize)) return image def viewFile(filename): import cv2 window_name = 'Output Image' img = cv2.imread(filename) if img is None: print(' Output image not found !!') else: cv2.namedWindow(window_name, flags=cv2.WINDOW_AUTOSIZE | cv2.WINDOW_GUI_NORMAL) img = frame_resize(img, 1000) cv2.imshow(window_name, img) while(True): key = cv2.waitKey(1) if key == 27 or key == 113: # 'esc' or 'q' break cv2.destroyAllWindows() return def main(args): print(args) cudnn.benchmark = True torch.manual_seed(args.seed) solver = Solver(args) if args.mode == 'train': assert len(subdirs(args.train_img_dir)) == args.num_domains assert len(subdirs(args.val_img_dir)) == args.num_domains loaders = Munch(src=get_train_loader(root=args.train_img_dir, which='source', img_size=args.img_size, batch_size=args.batch_size, prob=args.randcrop_prob, num_workers=args.num_workers), ref=get_train_loader(root=args.train_img_dir, which='reference', img_size=args.img_size, batch_size=args.batch_size, prob=args.randcrop_prob, num_workers=args.num_workers), val=get_test_loader(root=args.val_img_dir, img_size=args.img_size, batch_size=args.val_batch_size, shuffle=True, num_workers=args.num_workers)) solver.train(loaders) elif args.mode == 'sample': assert len(subdirs(args.src_dir)) == args.num_domains assert len(subdirs(args.ref_dir)) == args.num_domains loaders = Munch(src=get_test_loader(root=args.src_dir, img_size=args.img_size, batch_size=args.val_batch_size, shuffle=False, num_workers=args.num_workers), ref=get_test_loader(root=args.ref_dir, img_size=args.img_size, batch_size=args.val_batch_size, shuffle=False, num_workers=args.num_workers)) solver.sample(loaders) viewFile(args.result_dir + '/reference.jpg') elif args.mode == 'eval': solver.evaluate() elif args.mode == 'align': from core.wing import align_faces align_faces(args, args.inp_dir, args.out_dir) else: raise NotImplementedError if __name__ == '__main__': parser = argparse.ArgumentParser() # model arguments parser.add_argument('--img_size', type=int, default=256, help='Image resolution') parser.add_argument('--num_domains', type=int, default=2, help='Number of domains') parser.add_argument('--latent_dim', type=int, default=16, help='Latent vector dimension') parser.add_argument('--hidden_dim', type=int, default=512, help='Hidden dimension of mapping network') parser.add_argument('--style_dim', type=int, default=64, help='Style code dimension') # weight for objective functions parser.add_argument('--lambda_reg', type=float, default=1, help='Weight for R1 regularization') parser.add_argument('--lambda_cyc', type=float, default=1, help='Weight for cyclic consistency loss') parser.add_argument('--lambda_sty', type=float, default=1, help='Weight for style reconstruction loss') parser.add_argument('--lambda_ds', type=float, default=1, help='Weight for diversity sensitive loss') parser.add_argument('--ds_iter', type=int, default=100000, help='Number of iterations to optimize diversity sensitive loss') parser.add_argument('--w_hpf', type=float, default=1, help='weight for high-pass filtering') # training arguments parser.add_argument('--randcrop_prob', type=float, default=0.5, help='Probabilty of using random-resized cropping') parser.add_argument('--total_iters', type=int, default=100000, help='Number of total iterations') parser.add_argument('--resume_iter', type=int, default=0, help='Iterations to resume training/testing') parser.add_argument('--batch_size', type=int, default=8, help='Batch size for training') parser.add_argument('--val_batch_size', type=int, default=32, help='Batch size for validation') parser.add_argument('--lr', type=float, default=1e-4, help='Learning rate for D, E and G') parser.add_argument('--f_lr', type=float, default=1e-6, help='Learning rate for F') parser.add_argument('--beta1', type=float, default=0.0, help='Decay rate for 1st moment of Adam') parser.add_argument('--beta2', type=float, default=0.99, help='Decay rate for 2nd moment of Adam') parser.add_argument('--weight_decay', type=float, default=1e-4, help='Weight decay for optimizer') parser.add_argument('--num_outs_per_domain', type=int, default=10, help='Number of generated images per domain during sampling') # misc parser.add_argument('--mode', type=str, required=True, choices=['train', 'sample', 'eval', 'align'], help='This argument is used in solver') parser.add_argument('--num_workers', type=int, default=4, help='Number of workers used in DataLoader') parser.add_argument('--seed', type=int, default=777, help='Seed for random number generator') # directory for training parser.add_argument('--train_img_dir', type=str, default='data/celeba_hq/train', help='Directory containing training images') parser.add_argument('--val_img_dir', type=str, default='data/celeba_hq/val', help='Directory containing validation images') parser.add_argument('--sample_dir', type=str, default='expr/samples', help='Directory for saving generated images') parser.add_argument('--checkpoint_dir', type=str, default='expr/checkpoints', help='Directory for saving network checkpoints') # directory for calculating metrics parser.add_argument('--eval_dir', type=str, default='expr/eval', help='Directory for saving metrics, i.e., FID and LPIPS') # directory for testing parser.add_argument('--result_dir', type=str, default='expr/results', help='Directory for saving generated images and videos') parser.add_argument('--src_dir', type=str, default='assets/representative/celeba_hq/src', help='Directory containing input source images') parser.add_argument('--ref_dir', type=str, default='assets/representative/celeba_hq/ref', help='Directory containing input reference images') parser.add_argument('--inp_dir', type=str, default='assets/representative/custom/female', help='input directory when aligning faces') parser.add_argument('--out_dir', type=str, default='assets/representative/celeba_hq/src/female', help='output directory when aligning faces') # face alignment parser.add_argument('--wing_path', type=str, default='expr/checkpoints/wing.ckpt') parser.add_argument('--lm_path', type=str, default='expr/checkpoints/celeba_lm_mean.npz') # step size parser.add_argument('--print_every', type=int, default=10) parser.add_argument('--sample_every', type=int, default=5000) parser.add_argument('--save_every', type=int, default=10000) parser.add_argument('--eval_every', type=int, default=50000) args = parser.parse_args() main(args)
(py38_gan) PS > python main.py --mode align --inp_dir assets/representative/custom_1/male --out_dir assets/representative/celeba_hq/ref_test/male
(py38_gan) PS C:\anaconda_win\work\stargan-v2> python main.py --mode align --inp_dir assets/representative/custom_1/male --out_dir assets/representative/celeba_hq/ref_test/male Namespace(batch_size=8, beta1=0.0, beta2=0.99, checkpoint_dir='expr/checkpoints', ds_iter=100000, eval_dir='expr/eval', eval_every=50000, f_lr=1e-06, hidden_dim=512, img_size=256, inp_dir='assets/representative/custom_1/male', lambda_cyc=1, lambda_ds=1, lambda_reg=1, lambda_sty=1, latent_dim=16, lm_path='expr/checkpoints/celeba_lm_mean.npz', lr=0.0001, mode='align', num_domains=2, num_outs_per_domain=10, num_workers=4, out_dir='assets/representative/celeba_hq/ref_test/male', print_every=10, randcrop_prob=0.5, ref_dir='assets/representative/celeba_hq/ref', result_dir='expr/results', resume_iter=0, sample_dir='expr/samples', sample_every=5000, save_every=10000, seed=777, src_dir='assets/representative/celeba_hq/src', style_dim=64, total_iters=100000, train_img_dir='data/celeba_hq/train', val_batch_size=32, val_img_dir='data/celeba_hq/val', w_hpf=1, weight_decay=0.0001, wing_path='expr/checkpoints/wing.ckpt') Number of parameters of generator: 43467395 Number of parameters of mapping_network: 2438272 Number of parameters of style_encoder: 20916928 Number of parameters of discriminator: 20852290 Number of parameters of fan: 6333603 Initializing generator... Initializing mapping_network... Initializing style_encoder... Initializing discriminator... Saved the aligned image to izutsu_m1.jpg... Saved the aligned image to izutsu_m2.jpg... Saved the aligned image to nitta_m1.jpg... Saved the aligned image to nitta_m2.jpg... Saved the aligned image to okegawa_m1.jpg... Saved the aligned image to okegawa_m2.jpg... Saved the aligned image to okegawa_m3.JPG... Saved the aligned image to yaoi_m1.jpg... Saved the aligned image to yaoi_m2.jpg...
(py38_gan) PS > python main2.py --mode sample --num_domains 2 --resume_iter 100000 --w_hpf 1 --checkpoint_dir expr/checkpoints/celeba_hq --result_dir expr/results/celeba_hq --src_dir assets/representative/celeba_hq/src --ref_dir assets/representative/celeba_hq/ref_1例2:東洋人のソース画像
(py38_gan) PS > python main2.py --mode sample --num_domains 2 --resume_iter 100000 --w_hpf 1 --checkpoint_dir expr/checkpoints/celeba_hq --result_dir expr/results/celeba_hq --src_dir assets/representative/celeba_hq/src_3 --ref_dir assets/representative/celeba_hq/ref_1
(py38_gan) PS > python main2.py --mode sample --num_domains 2 --resume_iter 100000 --w_hpf 1 --checkpoint_dir expr/checkpoints/celeba_hq --result_dir expr/results/celeba_hq --src_dir assets/representative/celeba_hq/src --ref_dir assets/representative/celeba_hq/ref_0
(py38_gan) PS > python main2.py --mode sample --num_domains 3 --resume_iter 100000 --w_hpf 0 --checkpoint_dir expr/checkpoints/afhq --result_dir expr/results/afhq --src_dir assets/representative/afhq/src_0 --ref_dir assets/representative/afhq/ref_0
git : 用語 'git' は、コマンドレット、関数、スクリプト ファイル、または操作可能なプログラムの名前として認識されません。名前が正しく記述されていることを確認し、パスが含まれている場合はそのパスが正しいことを確認してから、再試行してください。 発生場所 行:1 文字:1 + git clone https://github.com/clovaai/stargan-v2.git + ~~~ + CategoryInfo : ObjectNotFound: (git:String) [], CommandNotFound Exception + FullyQualifiedErrorId : CommandNotFoundException・Linux
コマンド 'git' が見つかりません。次の方法でインストールできます: sudo apt install git
sudo apt install git
fatal: destination path 'stargan-v2' already exists and is not an empty directory
(py38_gan) PS C:\anaconda_win\work\stargan-v2> python main.py --mode sample --num_domains 2 --resume_iter 100000 --w_hpf 1 --checkpoint_dir expr/checkpoints/celeba_hq --result_dir expr/results/celeba_hq --src_dir assets/representative/celeba_hq/src_0 --ref_dir assets/representative/celeba_hq/ref_0 Traceback (most recent call last): File "main.py", line 14, in <module> from munch import Munch ModuleNotFoundError: No module named 'munch'
pip install munch
(py38_gan) PS C:\anaconda_win\work\stargan-v2> pip install munch Collecting munch Obtaining dependency information for munch from https://files.pythonhosted.org/packages/56/b3/7c69b37f03260a061883bec0e7b05be7117c1b1c85f5212c72c8c2bc3c8c/munch-4.0.0-py2.py3-none-any.whl.metadata Downloading munch-4.0.0-py2.py3-none-any.whl.metadata (5.9 kB) Using cached munch-4.0.0-py2.py3-none-any.whl (9.9 kB) Installing collected packages: munch Successfully installed munch-4.0.0
(py38_gan) PS C:\anaconda_win\work\stargan-v2> python main.py --mode sample --num_domains 2 --resume_iter 100000 --w_hpf 1 --checkpoint_dir expr/checkpoints/celeba_hq --result_dir expr/results/celeba_hq --src_dir assets/representative/celeba_hq/src_0 --ref_dir assets/representative/celeba_hq/ref_0 Traceback (most recent call last): File "main.py", line 20, in <module> from core.solver import Solver File "N:\anaconda_win\work\stargan-v2\core\solver.py", line 21, in <module> from core.model import build_model File "N:\anaconda_win\work\stargan-v2\core\model.py", line 20, in <module> from core.wing import FAN File "N:\anaconda_win\work\stargan-v2\core\wing.py", line 21, in <module> from skimage.filters import gaussian ModuleNotFoundError: No module named 'skimage'
pip install scikit-image
(py38_gan) PS C:\anaconda_win\work\stargan-v2> pip install scikit-image Collecting scikit-image Obtaining dependency information for scikit-image from https://files.pythonhosted.org/packages/d7/d1/a4c715ad640c9eb0daaa77c4ce561b06e086bec44cbc79083e3548b00b76/scikit_image-0.21.0-cp38-cp38-win_amd64.whl.metadata Downloading scikit_image-0.21.0-cp38-cp38-win_amd64.whl.metadata (14 kB) Collecting numpy>=1.21.1 (from scikit-image) Obtaining dependency information for numpy>=1.21.1 from https://files.pythonhosted.org/packages/69/65/0d47953afa0ad569d12de5f65d964321c208492064c38fe3b0b9744f8d44/numpy-1.24.4-cp38-cp38-win_amd64.whl.metadata Downloading numpy-1.24.4-cp38-cp38-win_amd64.whl.metadata (5.6 kB) Requirement already satisfied: scipy>=1.8 in c:\users\izuts\anaconda3\envs\py38_gan\lib\site-packages (from scikit-image) (1.9.0) Requirement already satisfied: networkx>=2.8 in c:\users\izuts\anaconda3\envs\py38_gan\lib\site-packages (from scikit-image) (3.1) Requirement already satisfied: pillow>=9.0.1 in c:\users\izuts\anaconda3\envs\py38_gan\lib\site-packages (from scikit-image) (10.0.1) Collecting imageio>=2.27 (from scikit-image) Obtaining dependency information for imageio>=2.27 from https://files.pythonhosted.org/packages/f6/37/e21e6f38b93878ba80302e95b8ccd4718d80f0c53055ccae343e606b1e2d/imageio-2.31.5-py3-none-any.whl.metadata Downloading imageio-2.31.5-py3-none-any.whl.metadata (4.6 kB) Collecting tifffile>=2022.8.12 (from scikit-image) Obtaining dependency information for tifffile>=2022.8.12 from https://files.pythonhosted.org/packages/06/a3/68d17088a4f09565bc7341fd20490da8191ec4cddde479daaabbe07bb603/tifffile-2023.7.10-py3-none-any.whl.metadata Downloading tifffile-2023.7.10-py3-none-any.whl.metadata (31 kB) Collecting PyWavelets>=1.1.1 (from scikit-image) Using cached PyWavelets-1.4.1-cp38-cp38-win_amd64.whl (4.2 MB) Requirement already satisfied: packaging>=21 in c:\users\izuts\anaconda3\envs\py38_gan\lib\site-packages (from scikit-image) (23.2) Collecting lazy_loader>=0.2 (from scikit-image) Obtaining dependency information for lazy_loader>=0.2 from https://files.pythonhosted.org/packages/a1/c3/65b3814e155836acacf720e5be3b5757130346670ac454fee29d3eda1381/lazy_loader-0.3-py3-none-any.whl.metadata Downloading lazy_loader-0.3-py3-none-any.whl.metadata (4.3 kB) Using cached scikit_image-0.21.0-cp38-cp38-win_amd64.whl (22.7 MB) Downloading imageio-2.31.5-py3-none-any.whl (313 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313.2/313.2 kB 3.2 MB/s eta 0:00:00 Using cached lazy_loader-0.3-py3-none-any.whl (9.1 kB) Using cached numpy-1.24.4-cp38-cp38-win_amd64.whl (14.9 MB) Using cached tifffile-2023.7.10-py3-none-any.whl (220 kB) Installing collected packages: numpy, lazy_loader, tifffile, PyWavelets, imageio, scikit-image Attempting uninstall: numpy Found existing installation: numpy 1.19.5 Uninstalling numpy-1.19.5: Successfully uninstalled numpy-1.19.5 ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. openvino 2022.1.0 requires numpy<1.20,>=1.16.6, but you have numpy 1.24.4 which is incompatible. Successfully installed PyWavelets-1.4.1 imageio-2.31.5 lazy_loader-0.3 numpy-1.24.4 scikit-image-0.21.0 tifffile-2023.7.10
(py38_gan) PS C:\anaconda_win\work\stargan-v2> python main.py --mode sample --num_domains 2 --resume_iter 100000 --w_hpf 1 --checkpoint_dir expr/checkpoints/celeba_hq --result_dir expr/results/celeba_hq --src_dir assets/representative/celeba_hq/src_0 --ref_dir assets/representative/celeba_hq/ref_0 Traceback (most recent call last): File "main.py", line 20, in <module> from core.solver import Solver File "N:\anaconda_win\work\stargan-v2\core\solver.py", line 24, in <module> import core.utils as utils File "N:\anaconda_win\work\stargan-v2\core\utils.py", line 18, in <module> import ffmpeg ModuleNotFoundError: No module named 'ffmpeg'
pip install ffmpeg
(py38_gan) PS C:\anaconda_win\work\stargan-v2> pip install ffmpeg Collecting ffmpeg Using cached ffmpeg-1.4-py3-none-any.whl Installing collected packages: ffmpeg Successfully installed ffmpeg-1.4
(py38_gan) PS C:\anaconda_win\work\stargan-v2> python main.py --mode sample --num_domains 2 --resume_iter 100000 --w_hpf 1 --checkpoint_dir expr/checkpoints/celeba_hq --result_dir expr/results/celeba_hq --src_dir assets/representative/celeba_hq/src_0 --ref_dir assets/representative/celeba_hq/ref_0 Namespace(batch_size=8, beta1=0.0, beta2=0.99, checkpoint_dir='expr/checkpoints/celeba_hq', ds_iter=100000, eval_dir='expr/eval', eval_every=50000, f_lr=1e-06, hidden_dim=512, img_size=256, inp_dir='assets/representative/custom/female', lambda_cyc=1, lambda_ds=1, lambda_reg=1, lambda_sty=1, latent_dim=16, lm_path='expr/checkpoints/celeba_lm_mean.npz', lr=0.0001, mode='sample', num_domains=2, num_outs_per_domain=10, num_workers=4, out_dir='assets/representative/celeba_hq/src/female', print_every=10, randcrop_prob=0.5, ref_dir='assets/representative/celeba_hq/ref_0', result_dir='expr/results/celeba_hq', resume_iter=100000, sample_dir='expr/samples', sample_every=5000, save_every=10000, seed=777, src_dir='assets/representative/celeba_hq/src_0', style_dim=64, total_iters=100000, train_img_dir='data/celeba_hq/train', val_batch_size=32, val_img_dir='data/celeba_hq/val', w_hpf=1.0, weight_decay=0.0001, wing_path='expr/checkpoints/wing.ckpt') Number of parameters of generator: 43467395 Number of parameters of mapping_network: 2438272 Number of parameters of style_encoder: 20916928 Number of parameters of discriminator: 20852290 Number of parameters of fan: 6333603 Traceback (most recent call last): File "main.py", line 182, in <module> main(args) File "main.py", line 37, in main solver = Solver(args) File "N:\anaconda_win\work\stargan-v2\core\solver.py", line 58, in __init__ self.ckptios = [CheckpointIO(ospj(args.checkpoint_dir, '{:06d}_nets_ema.ckpt'), data_parallel=True, **self.nets_ema)] File "N:\anaconda_win\work\stargan-v2\core\checkpoint.py", line 17, in __init__ os.makedirs(os.path.dirname(fname_template), exist_ok=True) File "C:\Users\izuts\anaconda3\envs\py38_gan\lib\os.py", line 223, in makedirs mkdir(name, mode) FileNotFoundError: [WinError 3] 指定されたパスが見つかりません。: '{:'
else: # self.ckptios = [CheckpointIO(ospj(args.checkpoint_dir, '{:06d}_nets_ema.ckpt'), data_parallel=True, **self.nets_ema)] self.ckptios = [CheckpointIO(ospj(args.checkpoint_dir, '100000_nets_ema.ckpt'), data_parallel=True, **self.nets_ema)]
(py38_gan) PS C:\anaconda_win\work\stargan-v2> python main.py --mode sample --num_domains 2 --resume_iter 100000 --w_hpf 1 --checkpoint_dir expr/checkpoints/celeba_hq --result_dir expr/results/celeba_hq --src_dir assets/representative/celeba_hq/src_0 --ref_dir assets/representative/celeba_hq/ref_0 Namespace(batch_size=8, beta1=0.0, beta2=0.99, checkpoint_dir='expr/checkpoints/celeba_hq', ds_iter=100000, eval_dir='expr/eval', eval_every=50000, f_lr=1e-06, hidden_dim=512, img_size=256, inp_dir='assets/representative/custom/female', lambda_cyc=1, lambda_ds=1, lambda_reg=1, lambda_sty=1, latent_dim=16, lm_path='expr/checkpoints/celeba_lm_mean.npz', lr=0.0001, mode='sample', num_domains=2, num_outs_per_domain=10, num_workers=4, out_dir='assets/representative/celeba_hq/src/female', print_every=10, randcrop_prob=0.5, ref_dir='assets/representative/celeba_hq/ref_0', result_dir='expr/results/celeba_hq', resume_iter=100000, sample_dir='expr/samples', sample_every=5000, save_every=10000, seed=777, src_dir='assets/representative/celeba_hq/src_0', style_dim=64, total_iters=100000, train_img_dir='data/celeba_hq/train', val_batch_size=32, val_img_dir='data/celeba_hq/val', w_hpf=1.0, weight_decay=0.0001, wing_path='expr/checkpoints/wing.ckpt') Number of parameters of generator: 43467395 Number of parameters of mapping_network: 2438272 Number of parameters of style_encoder: 20916928 Number of parameters of discriminator: 20852290 Number of parameters of fan: 6333603 Initializing generator... Initializing mapping_network... Initializing style_encoder... Initializing discriminator... Preparing DataLoader for the generation phase... Preparing DataLoader for the generation phase... Loading checkpoint from expr/checkpoints/celeba_hq\100000_nets_ema.ckpt... Traceback (most recent call last): File "main.py", line 182, in <module> main(args) File "main.py", line 73, in main solver.sample(loaders) File "C:\Users\izuts\anaconda3\envs\py38_gan\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "N:\anaconda_win\work\stargan-v2\core\solver.py", line 179, in sample self._load_checkpoint(args.resume_iter) File "N:\anaconda_win\work\stargan-v2\core\solver.py", line 74, in _load_checkpoint ckptio.load(step) File "N:\anaconda_win\work\stargan-v2\core\checkpoint.py", line 48, in load module.module.load_state_dict(module_dict[name]) File "C:\Users\izuts\anaconda3\envs\py38_gan\lib\site-packages\torch\nn\modules\module.py", line 2152, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for Generator: Missing key(s) in state_dict: "hpf.filter".
if self.data_parallel: # module.module.load_state_dict(module_dict[name]) module.module.load_state_dict(module_dict[name], False)
(py38_gan) PS C:\anaconda_win\work\stargan-v2> python main.py --mode sample --num_domains 2 --resume_iter 100000 --w_hpf 1 --checkpoint_dir expr/checkpoints/celeba_hq --result_dir expr/results/celeba_hq --src_dir assets/representative/celeba_hq/src_0 --ref_dir assets/representative/celeba_hq/ref_0 Namespace(batch_size=8, beta1=0.0, beta2=0.99, checkpoint_dir='expr/checkpoints/celeba_hq', ds_iter=100000, eval_dir='expr/eval', eval_every=50000, f_lr=1e-06, hidden_dim=512, img_size=256, inp_dir='assets/representative/custom/female', lambda_cyc=1, lambda_ds=1, lambda_reg=1, lambda_sty=1, latent_dim=16, lm_path='expr/checkpoints/celeba_lm_mean.npz', lr=0.0001, mode='sample', num_domains=2, num_outs_per_domain=10, num_workers=4, out_dir='assets/representative/celeba_hq/src/female', print_every=10, randcrop_prob=0.5, ref_dir='assets/representative/celeba_hq/ref_0', result_dir='expr/results/celeba_hq', resume_iter=100000, sample_dir='expr/samples', sample_every=5000, save_every=10000, seed=777, src_dir='assets/representative/celeba_hq/src_0', style_dim=64, total_iters=100000, train_img_dir='data/celeba_hq/train', val_batch_size=32, val_img_dir='data/celeba_hq/val', w_hpf=1.0, weight_decay=0.0001, wing_path='expr/checkpoints/wing.ckpt') Number of parameters of generator: 43467395 Number of parameters of mapping_network: 2438272 Number of parameters of style_encoder: 20916928 Number of parameters of discriminator: 20852290 Number of parameters of fan: 6333603 Initializing generator... Initializing mapping_network... Initializing style_encoder... Initializing discriminator... Preparing DataLoader for the generation phase... Preparing DataLoader for the generation phase... Loading checkpoint from expr/checkpoints/celeba_hq\100000_nets_ema.ckpt... Working on expr/results/celeba_hq\reference.jpg... Working on expr/results/celeba_hq\video_ref.mp4... video_ref: 100%|█████████████████████████████████████████| 2/2 [00:00<?, ?it/s] Traceback (most recent call last): File "main.py", line 182, in <module> main(args) File "main.py", line 73, in main solver.sample(loaders) File "C:\Users\izuts\anaconda3\envs\py38_gan\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "N:\anaconda_win\work\stargan-v2\core\solver.py", line 190, in sample utils.video_ref(nets_ema, args, src.x, ref.x, ref.y, fname) File "C:\Users\izuts\anaconda3\envs\py38_gan\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "N:\anaconda_win\work\stargan-v2\core\utils.py", line 222, in video_ref video.append(frames[-1:]) UnboundLocalError: local variable 'frames' referenced before assignment
# fname = ospj(args.result_dir, 'video_ref.mp4') # print('Working on {}...'.format(fname)) # utils.video_ref(nets_ema, args, src.x, ref.x, ref.y, fname)
(py38_gan) PS C:\anaconda_win\work\stargan-v2> python main.py --mode align --inp_dir assets/representative/custom_1/male --out_dir assets/representative/celeba_hq/ref_test/male Namespace(batch_size=8, beta1=0.0, beta2=0.99, checkpoint_dir='expr/checkpoints', ds_iter=100000, eval_dir='expr/eval', eval_every=50000, f_lr=1e-06, hidden_dim=512, img_size=256, inp_dir='assets/representative/custom_1/male', lambda_cyc=1, lambda_ds=1, lambda_reg=1, lambda_sty=1, latent_dim=16, lm_path='expr/checkpoints/celeba_lm_mean.npz', lr=0.0001, mode='align', num_domains=2, num_outs_per_domain=10, num_workers=4, out_dir='assets/representative/celeba_hq/ref_test/male', print_every=10, randcrop_prob=0.5, ref_dir='assets/representative/celeba_hq/ref', result_dir='expr/results', resume_iter=0, sample_dir='expr/samples', sample_every=5000, save_every=10000, seed=777, src_dir='assets/representative/celeba_hq/src', style_dim=64, total_iters=100000, train_img_dir='data/celeba_hq/train', val_batch_size=32, val_img_dir='data/celeba_hq/val', w_hpf=1, weight_decay=0.0001, wing_path='expr/checkpoints/wing.ckpt') Number of parameters of generator: 43467395 Number of parameters of mapping_network: 2438272 Number of parameters of style_encoder: 20916928 Number of parameters of discriminator: 20852290 Number of parameters of fan: 6333603 Initializing generator... Initializing mapping_network... Initializing style_encoder... Initializing discriminator... Traceback (most recent call last): File "main.py", line 182, in <module> main(args) File "main.py", line 78, in main align_faces(args, args.inp_dir, args.out_dir) File "N:\anaconda_win\work\stargan-v2\core\wing.py", line 427, in align_faces x_aligned = aligner.align(x) File "N:\anaconda_win\work\stargan-v2\core\wing.py", line 305, in align img_np, landmarks = pad_mirror(img_np, landmarks) File "N:\anaconda_win\work\stargan-v2\core\wing.py", line 392, in pad_mirror small_blurred = gaussian(cv2.resize(img, (W, H)), H//100, multichannel=True) TypeError: gaussian() got an unexpected keyword argument 'multichannel'
# small_blurred = gaussian(cv2.resize(img, (W, H)), H//100, multichannel=True) small_blurred = gaussian(cv2.resize(img, (W, H)), H//100, channel_axis=1)
conda create -n stargan-v2 python=3.6.7 conda activate stargan-v2 conda install -y pytorch=1.4.0 torchvision=0.5.0 cudatoolkit=10.0 -c pytorch conda install x264=='1!152.20180717' ffmpeg=4.0.2 -c conda-forge pip install opencv-python==4.1.2.30 ffmpeg-python==0.2.0 scikit-image==0.16.2 pip install pillow==7.0.0 scipy==1.2.1 tqdm==4.43.0 munch==2.5.0※ 現在ネット上に存在しないパッケージがありインストールできない
bash download.sh celeba-hq-dataset・「AFHQ.」(動物の顔)
bash download.sh afhq-dataset
ダウンロード・フォルダ名 | 画像枚数 | |||
data | celeba_hq | train | female | 17,943 |
male | 10.057 | |||
val | female | 1,000 | ||
male | 1,000 | |||
afhq | train | cat | 5,153 | |
dog | 4,739 | |||
wild | 4,738 | |||
val | cat | 500 | ||
dog | 500 | |||
wild | 500 |
bash download.sh pretrained-network-celeba-hq bash download.sh wing・「AFHQ.」(動物の顔)
bash download.sh pretrained-network-afhq※ windows では「bash」コマンドが使えないので Linux で実行してできたファイルを配置して使用
PukiWiki 1.5.2 © 2001-2019 PukiWiki Development Team. Powered by PHP 7.4.3-4ubuntu2.24. HTML convert time: 0.049 sec.