私的AI研究会 > RevYOLOv5_3
「PyTorch ではじめる AI開発」Chapter04 で使用する「YOLO V5」について復習する。
「YOLO V5」の学習を深堀する
物体検出の応用として車のナンバープレート識別を検討してみる
train: data/vd_dataset/train/images val: data/vd_dataset/valid/images test: data/vd_dataset/test/images nc: 2 names: ['licence', 'licenseplate'] roboflow: workspace: image-processing-u647q project: vehicle-detection-639on version: 7 license: CC BY 4.0 url: https://universe.roboflow.com/image-processing-u647q/vehicle-detection-639on/dataset/7
(py_learn) python train.py --epochs 100 --data data/vd_dataset/vd_data.yaml --weights yolov5s.pt --name vd_yolov5s_ep100・GPU を使用しない場合は以下のコマンドを実行する
(py_learn) python train.py --epochs 100 --data data/vd_dataset/vd_data.yaml --weights yolov5s.pt --name vd_yolov5s_ep100 --device cpu
(py_learn) python train.py --epochs 100 --data data/vd_dataset/vd_data.yaml --weights yolov5s.pt --name vd_yolov5s_ep100 : Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 99/99 4.17G 0.01894 0.006213 0.000583 12 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.544 0.5 0.468 0.242 100 epochs completed in 0.107 hours. Optimizer stripped from runs\train\vd_yolov5s_ep100\weights\last.pt, 14.4MB Optimizer stripped from runs\train\vd_yolov5s_ep100\weights\best.pt, 14.4MB Validating runs\train\vd_yolov5s_ep100\weights\best.pt... Fusing layers... Model summary: 157 layers, 7015519 parameters, 0 gradients, 15.8 GFLOPs Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:01<0 all 136 155 0.476 0.53 0.472 0.26 licence 136 132 0.681 0.712 0.635 0.333 licenseplate 136 23 0.27 0.348 0.31 0.187 Results saved to runs\train\vd_yolov5s_ep100
(py_learn) python train.py --epochs 100 --data data/vd_dataset/vd_data.yaml --weights yolov5s.pt --name vd_yolov5s_ep100 train: weights=yolov5s.pt, cfg=, data=data/vd_dataset/vd_data.yaml, hyp=data\hyps\hyp.scratch-low.yaml, epochs=100, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, evolve_population=data\hyps, resume_evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs\train, name=vd_yolov5s_ep100, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest, ndjson_console=False, ndjson_file=False github: YOLOv5 is out of date by 10 commits. Use 'git pull' or 'git clone https://github.com/ultralytics/yolov5' to update. YOLOv5 v7.0-294-gdb125a20 Python-3.11.8 torch-2.2.1+cu121 CUDA:0 (NVIDIA GeForce RTX 4070 Ti, 12282MiB) hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0 Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5 runs in Comet TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/ Overriding model.yaml nc=80 with nc=2 from n params module arguments 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] 2 -1 1 18816 models.common.C3 [64, 64, 1] 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] 4 -1 2 115712 models.common.C3 [128, 128, 2] 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] 6 -1 3 625152 models.common.C3 [256, 256, 3] 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] 8 -1 1 1182720 models.common.C3 [512, 512, 1] 9 -1 1 656896 models.common.SPPF [512, 512, 5] 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 12 [-1, 6] 1 0 models.common.Concat [1] 13 -1 1 361984 models.common.C3 [512, 256, 1, False] 14 -1 1 33024 models.common.Conv [256, 128, 1, 1] 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 16 [-1, 4] 1 0 models.common.Concat [1] 17 -1 1 90880 models.common.C3 [256, 128, 1, False] 18 -1 1 147712 models.common.Conv [128, 128, 3, 2] 19 [-1, 14] 1 0 models.common.Concat [1] 20 -1 1 296448 models.common.C3 [256, 256, 1, False] 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] 22 [-1, 10] 1 0 models.common.Concat [1] 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] 24 [17, 20, 23] 1 18879 models.yolo.Detect [2, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]] Model summary: 214 layers, 7025023 parameters, 7025023 gradients, 16.0 GFLOPs Transferred 343/349 items from yolov5s.pt AMP: checks passed optimizer: SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.0005), 60 bias train: Scanning C:\anaconda_win\workspace_pylearn\yolov5\data\vd_dataset\train\labels... 534 images, 0 backgrounds, 0 c train: New cache created: C:\anaconda_win\workspace_pylearn\yolov5\data\vd_dataset\train\labels.cache val: Scanning C:\anaconda_win\workspace_pylearn\yolov5\data\vd_dataset\valid\labels... 136 images, 0 backgrounds, 0 cor val: New cache created: C:\anaconda_win\workspace_pylearn\yolov5\data\vd_dataset\valid\labels.cache AutoAnchor: 4.49 anchors/target, 0.998 Best Possible Recall (BPR). Current anchors are a good fit to dataset Plotting labels to runs\train\vd_yolov5s_ep100\labels.jpg... Image sizes 640 train, 640 val Using 8 dataloader workers Logging results to runs\train\vd_yolov5s_ep100 Starting training for 100 epochs... Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 0/99 3.35G 0.1077 0.02402 0.02739 10 640: 100%|██████████| 34/34 [00:03<00:00, 8. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:01<0 all 136 155 0.00147 0.441 0.00787 0.0015 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 1/99 4.17G 0.07881 0.01994 0.02233 8 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.0881 0.286 0.0908 0.0228 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 2/99 4.17G 0.06813 0.01882 0.02023 11 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.124 0.14 0.0758 0.0166 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 3/99 4.17G 0.06052 0.01907 0.02192 15 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.262 0.28 0.187 0.0507 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 4/99 4.17G 0.05604 0.01678 0.01979 3 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.251 0.344 0.226 0.0733 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 5/99 4.17G 0.05357 0.01453 0.01962 4 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.339 0.468 0.275 0.1 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 6/99 4.17G 0.04962 0.013 0.01755 11 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.243 0.508 0.302 0.123 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 7/99 4.17G 0.04819 0.01288 0.01671 8 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.286 0.573 0.324 0.141 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 8/99 4.17G 0.04799 0.01224 0.01682 9 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.41 0.496 0.403 0.141 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 9/99 4.17G 0.0452 0.01103 0.01316 12 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.421 0.467 0.388 0.176 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 10/99 4.17G 0.04408 0.01181 0.01312 11 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.379 0.47 0.356 0.132 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 11/99 4.17G 0.04409 0.01053 0.01366 10 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.344 0.666 0.405 0.157 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 12/99 4.17G 0.0436 0.01069 0.0119 7 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.353 0.678 0.364 0.157 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 13/99 4.17G 0.04195 0.01045 0.01321 9 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.338 0.536 0.373 0.147 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 14/99 4.17G 0.04161 0.01003 0.01148 10 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.384 0.519 0.392 0.17 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 15/99 4.17G 0.04152 0.0105 0.01172 11 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.4 0.604 0.398 0.156 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 16/99 4.17G 0.04103 0.01077 0.009728 16 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.398 0.691 0.403 0.183 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 17/99 4.17G 0.04067 0.01022 0.009083 10 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.329 0.525 0.309 0.136 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 18/99 4.17G 0.03998 0.01104 0.008598 12 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.463 0.597 0.44 0.182 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 19/99 4.17G 0.03857 0.01019 0.008915 10 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.431 0.55 0.395 0.175 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 20/99 4.17G 0.0397 0.01049 0.008228 8 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.407 0.478 0.389 0.173 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 21/99 4.17G 0.0381 0.01013 0.00713 11 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.41 0.598 0.38 0.158 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 22/99 4.17G 0.03814 0.01021 0.007856 9 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.395 0.479 0.375 0.167 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 23/99 4.17G 0.03744 0.009726 0.008886 13 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.407 0.475 0.366 0.179 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 24/99 4.17G 0.03816 0.009636 0.007989 10 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.348 0.614 0.383 0.183 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 25/99 4.17G 0.0362 0.009729 0.006832 7 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.381 0.549 0.388 0.163 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 26/99 4.17G 0.03631 0.00967 0.006515 10 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.464 0.691 0.438 0.199 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 27/99 4.17G 0.03671 0.009812 0.006551 19 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.419 0.558 0.364 0.161 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 28/99 4.17G 0.03558 0.009518 0.008033 17 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.446 0.502 0.422 0.187 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 29/99 4.17G 0.03544 0.009402 0.006808 9 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.456 0.449 0.448 0.21 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 30/99 4.17G 0.03582 0.008926 0.004771 9 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.382 0.568 0.401 0.196 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 31/99 4.17G 0.0351 0.009278 0.006837 11 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.338 0.568 0.345 0.149 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 32/99 4.17G 0.03559 0.008784 0.006162 8 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.399 0.638 0.389 0.146 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 33/99 4.17G 0.03339 0.009218 0.006279 9 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.378 0.414 0.343 0.153 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 34/99 4.17G 0.03328 0.009094 0.005969 11 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.486 0.511 0.407 0.178 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 35/99 4.17G 0.03212 0.008869 0.004334 9 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.44 0.464 0.381 0.185 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 36/99 4.17G 0.03479 0.008576 0.004585 7 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.46 0.576 0.433 0.207 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 37/99 4.17G 0.03282 0.008963 0.004829 7 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.554 0.538 0.481 0.238 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 38/99 4.17G 0.03182 0.008006 0.005745 7 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.509 0.579 0.462 0.222 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 39/99 4.17G 0.03272 0.00886 0.004122 11 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.503 0.522 0.457 0.214 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 40/99 4.17G 0.03229 0.008904 0.004129 8 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.479 0.424 0.449 0.205 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 41/99 4.17G 0.03179 0.009141 0.004667 35 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.512 0.4 0.402 0.177 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 42/99 4.17G 0.03232 0.008642 0.004059 6 640: 100%|██████████| 34/34 [00:03<00:00, 10. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.466 0.466 0.436 0.214 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 43/99 4.17G 0.03252 0.008401 0.004131 11 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.477 0.515 0.453 0.231 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 44/99 4.17G 0.03102 0.008662 0.003599 8 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.535 0.496 0.487 0.233 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 45/99 4.17G 0.03094 0.008696 0.003257 12 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.546 0.531 0.509 0.231 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 46/99 4.17G 0.0311 0.008247 0.003277 9 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.554 0.476 0.452 0.22 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 47/99 4.17G 0.03009 0.008467 0.003349 9 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.403 0.504 0.408 0.208 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 48/99 4.17G 0.02996 0.007897 0.003302 11 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.493 0.556 0.467 0.231 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 49/99 4.17G 0.02982 0.008305 0.0032 13 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.487 0.522 0.478 0.252 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 50/99 4.17G 0.02879 0.007663 0.002992 12 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.433 0.498 0.449 0.217 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 51/99 4.17G 0.02883 0.007434 0.002397 12 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.498 0.47 0.434 0.208 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 52/99 4.17G 0.0286 0.007931 0.003441 8 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.404 0.608 0.421 0.208 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 53/99 4.17G 0.02858 0.007742 0.002966 7 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.414 0.442 0.429 0.21 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 54/99 4.17G 0.029 0.007838 0.002552 9 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.455 0.459 0.434 0.21 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 55/99 4.17G 0.02779 0.007517 0.003272 6 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.449 0.596 0.425 0.201 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 56/99 4.17G 0.02813 0.007328 0.002441 6 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.344 0.454 0.356 0.165 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 57/99 4.17G 0.02872 0.008069 0.002178 13 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.448 0.473 0.395 0.19 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 58/99 4.17G 0.02734 0.007133 0.001701 12 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.46 0.58 0.459 0.221 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 59/99 4.17G 0.02736 0.007516 0.002258 4 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.436 0.544 0.437 0.217 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 60/99 4.17G 0.02616 0.007238 0.002091 7 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.456 0.427 0.435 0.212 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 61/99 4.17G 0.02666 0.007796 0.001681 8 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.522 0.445 0.44 0.227 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 62/99 4.17G 0.02614 0.007259 0.002317 7 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.447 0.581 0.472 0.236 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 63/99 4.17G 0.02614 0.00749 0.001597 9 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.447 0.602 0.464 0.213 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 64/99 4.17G 0.02571 0.007683 0.001898 12 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.5 0.48 0.428 0.207 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 65/99 4.17G 0.02528 0.007227 0.002234 14 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.555 0.537 0.458 0.236 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 66/99 4.17G 0.02516 0.007606 0.001728 11 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.569 0.46 0.446 0.239 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 67/99 4.17G 0.02534 0.006963 0.001995 14 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.478 0.53 0.471 0.259 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 68/99 4.17G 0.02417 0.006699 0.001296 6 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.527 0.503 0.468 0.252 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 69/99 4.17G 0.02451 0.006508 0.0008484 6 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.464 0.52 0.443 0.229 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 70/99 4.17G 0.02485 0.007124 0.001725 11 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.451 0.469 0.445 0.229 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 71/99 4.17G 0.0237 0.006755 0.001088 10 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.444 0.529 0.431 0.214 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 72/99 4.17G 0.02346 0.006891 0.001379 15 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.445 0.537 0.436 0.222 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 73/99 4.17G 0.02407 0.007179 0.001141 17 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.496 0.488 0.418 0.221 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 74/99 4.17G 0.02253 0.006743 0.001067 9 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.449 0.508 0.408 0.209 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 75/99 4.17G 0.02311 0.006914 0.0009088 12 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.51 0.457 0.426 0.214 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 76/99 4.17G 0.02289 0.006651 0.001182 10 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.538 0.448 0.439 0.228 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 77/99 4.17G 0.02306 0.006418 0.0007185 13 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.513 0.525 0.446 0.235 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 78/99 4.17G 0.02275 0.006783 0.0009759 11 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.518 0.492 0.436 0.221 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 79/99 4.17G 0.02272 0.006716 0.001041 17 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.475 0.515 0.444 0.224 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 80/99 4.17G 0.02203 0.006576 0.001053 12 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.511 0.445 0.451 0.234 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 81/99 4.17G 0.02181 0.006566 0.0006471 10 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.535 0.444 0.431 0.223 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 82/99 4.17G 0.02159 0.006546 0.0006951 11 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.488 0.515 0.463 0.24 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 83/99 4.17G 0.02111 0.006619 0.0008768 26 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.475 0.511 0.454 0.232 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 84/99 4.17G 0.02119 0.00669 0.001046 8 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.492 0.502 0.435 0.225 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 85/99 4.17G 0.02142 0.006132 0.0004634 5 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.468 0.548 0.436 0.229 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 86/99 4.17G 0.02127 0.006663 0.00109 12 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.508 0.534 0.462 0.24 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 87/99 4.17G 0.02075 0.006554 0.0009801 10 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.572 0.547 0.479 0.245 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 88/99 4.17G 0.02098 0.006237 0.0008284 9 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.549 0.558 0.475 0.244 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 89/99 4.17G 0.02011 0.006429 0.0008699 9 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.576 0.492 0.463 0.242 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 90/99 4.17G 0.02069 0.006413 0.0009655 11 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.538 0.492 0.452 0.235 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 91/99 4.17G 0.02029 0.006122 0.0006603 11 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.545 0.548 0.465 0.235 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 92/99 4.17G 0.01956 0.006109 0.0006611 11 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.528 0.541 0.48 0.248 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 93/99 4.17G 0.01998 0.006234 0.0005419 13 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.501 0.565 0.481 0.253 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 94/99 4.17G 0.01997 0.005772 0.0007185 9 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.536 0.518 0.468 0.248 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 95/99 4.17G 0.01924 0.006182 0.0006602 8 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.589 0.488 0.474 0.243 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 96/99 4.17G 0.0196 0.006417 0.001518 11 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.595 0.478 0.471 0.239 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 97/99 4.17G 0.01935 0.006105 0.0005842 14 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.486 0.562 0.465 0.244 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 98/99 4.17G 0.0186 0.006031 0.0004643 12 640: 100%|██████████| 34/34 [00:02<00:00, 11. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.473 0.57 0.469 0.243 Epoch GPU_mem box_loss obj_loss cls_loss Instances Size 99/99 4.17G 0.01894 0.006213 0.000583 12 640: 100%|██████████| 34/34 [00:02<00:00, 12. Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:00<0 all 136 155 0.544 0.5 0.468 0.242 100 epochs completed in 0.107 hours. Optimizer stripped from runs\train\vd_yolov5s_ep100\weights\last.pt, 14.4MB Optimizer stripped from runs\train\vd_yolov5s_ep100\weights\best.pt, 14.4MB Validating runs\train\vd_yolov5s_ep100\weights\best.pt... Fusing layers... Model summary: 157 layers, 7015519 parameters, 0 gradients, 15.8 GFLOPs Class Images Instances P R mAP50 mAP50-95: 100%|██████████| 5/5 [00:01<0 all 136 155 0.476 0.53 0.472 0.26 licence 136 132 0.681 0.712 0.635 0.333 licenseplate 136 23 0.27 0.348 0.31 0.187 Results saved to runs\train\vd_yolov5s_ep100
ナンバー ナンバープレート・「vd_names」英語ファイル
licence licenseplate
(py_learn) python detect2.py --weights runs/train/vd_yolov5s_ep100/weights/best.pt --source ../number/test_data/・実行ログ(結果は「runs/detect/exp*」*は順次更新)
(py_learn) python detect2.py --weights runs/train/vd_yolov5s_ep100/weights/best.pt --source ../number/test_data/ detect2: weights=['runs/train/vd_yolov5s_ep100/weights/best.pt'], source=../number/test_data/, data=data\coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_csv=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs\detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1 YOLOv5 v7.0-294-gdb125a20 Python-3.11.8 torch-2.2.1+cu121 CUDA:0 (NVIDIA GeForce RTX 4070 Ti, 12282MiB) Fusing layers... Model summary: 157 layers, 7015519 parameters, 0 gradients, 15.8 GFLOPs Speed: 0.2ms pre-process, 5.4ms inference, 1.2ms NMS per image at shape (1, 3, 640, 640) Results saved to runs\detect\exp43
(py_learn) python detect3_yolov5.py -m runs/train/vd_yolov5s_ep100/weights/best.pt -i ../number/test_data/japan69.jpg -l vd_names_jp・実行ログ
(py_learn) python detect3_yolov5.py -m runs/train/vd_yolov5s_ep100/weights/best.pt -i ../number/test_data/japan69.jpg -l vd_names_jp Starting.. Object detection YoloV5 in PyTorch Ver. 0.07: Starting application... OpenCV virsion : 4.9.0 - Image File : ../number/test_data/japan69.jpg - YOLO v5 : ultralytics/yolov5 - Pretrained : runs/train/vd_yolov5s_ep100/weights/best.pt - Confidence lv: 0.25 - Label file : vd_names_jp - Program Title: y - Speed flag : y - Processed out: non - Use device : cuda:0 - Log Level : 3 Using cache found in C:\Users\izuts/.cache\torch\hub\ultralytics_yolov5_master YOLOv5 2024-4-9 Python-3.11.8 torch-2.2.1+cu121 CUDA:0 (NVIDIA GeForce RTX 4070 Ti, 12282MiB) Fusing layers... Model summary: 157 layers, 7015519 parameters, 0 gradients, 15.8 GFLOPs Adding AutoShape... FPS average: 9.50 Finished.
・ハイパーパラメータ
・「roboflow」のMask Wearing Datasetを使用
・学習用データセット作成
PukiWiki 1.5.2 © 2001-2019 PukiWiki Development Team. Powered by PHP 7.4.3-4ubuntu2.24. HTML convert time: 0.061 sec.