私的AI研究会 > AI_Program2
これまで検証してきた結果をもとに、Python で生成 AI プログラムを書く
画像から画像を生成する img2img |
参考サイト:diffusers(Stable Diffusion)による画像の改造/合成/変換/修正/拡大
(base) PS > conda activate sd_test (sd_test) PS > cd workspace_3/sd_test
モデルの種類 | 基本画像サイズ | パイプライン作成オブジェクト |
SD1.5 | 512x512 | StableDiffusionImg2ImgPipeline |
SDXL | 1024x1024 | StableDiffusionXLImg2ImgPipeline |
## sd_030.py 画像から画像生成(img2img ) ## model: beautifulRealistic_brav5.safetensors import torch from PIL import Image from diffusers import StableDiffusionImg2ImgPipeline,DPMSolverMultistepScheduler, logging from translate import Translator logging.set_verbosity_error() # モデルフォルダーのパス model_path = "/StabilityMatrix/Data/Models/StableDiffusion/SD1.5/beautifulRealistic_brav5.safetensors" image_path = "images/StableDiffusion_247.png" # GPUを使う場合は"cuda" 使わない場合は"cpu" device = 'cuda' # seed 値 seed = 12345678 # パイプラインを作成 pipeline = StableDiffusionImg2ImgPipeline.from_single_file( model_path, torch_dtype = torch.float16, ).to(device) # スケジューラ設定 pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) # プロンプト trans = Translator('en','ja').translate prompt_jp = '黒髪で短い髪の女性' prompt = trans(prompt_jp) src_image = Image.open(image_path) # Generatorオブジェクト作成 generator = torch.Generator(device).manual_seed(seed) print(f'Seed: {seed}, Model: {model_path}') print(f'prompt : {prompt_jp} → {prompt}') # 画像を生成 image = pipeline( prompt = prompt, image = src_image, num_inference_steps = 30, guidance_scale = 7, strength = 0.6, generator = generator ).images[0] image.save("results/image_030.png")
(sd_test) PS > python sd_030.py Fetching 11 files: 100%|███████████████████████████████| 11/11 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 6/6 [00:00<00:00, 10.30it/s] Seed: 12345678, Model: /StabilityMatrix/Data/Models/StableDiffusion/SD1.5/beautifulRealistic_brav5.safetensors prompt : 黒髪で短い髪の女性 → a woman with short black hair 100%|██████████████████████████████████████████| 18/18 [00:01<00:00, 15.78it/s]
## sd_031.py 画像から画像生成 strength 強さを表すパラメータ ## model: beautifulRealistic_brav5.safetensors import torch from PIL import Image from diffusers import StableDiffusionImg2ImgPipeline,DPMSolverMultistepScheduler, logging from translate import Translator import matplotlib.pyplot as plt logging.set_verbosity_error() # 画像生成 def image_generation(strength): # パイプラインを作成 pipeline = StableDiffusionImg2ImgPipeline.from_single_file( model_path, torch_dtype = torch.float16, ).to(device) # スケジューラ設定 pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) # Generatorオブジェクト作成 generator = torch.Generator(device).manual_seed(seed) # 画像を生成 img = pipeline( prompt = prompt, image = src_image, num_inference_steps = 30, guidance_scale = 7, strength = strength, generator = generator ).images[0] return img # モデルフォルダーのパス model_path = "/StabilityMatrix/Data/Models/StableDiffusion/SD1.5/beautifulRealistic_brav5.safetensors" image_path = "images/StableDiffusion_247.png" # GPUを使う場合は"cuda" 使わない場合は"cpu" device = 'cuda' # seed 値 seed = 12345678 # プロンプト trans = Translator('en','ja').translate prompt_jp = '黒髪で短い髪の女性' #prompt_jp = 'テラスでコーヒーを飲む金髪の女性' prompt = trans(prompt_jp) src_image = Image.open(image_path) print(f'Seed: {seed}, Model: {model_path}') print(f'prompt : {prompt_jp} → {prompt}') # 複数画像を生成 plt.figure(figsize = [6, 15.5], dpi = 100) for i in range(10): strength = 0.1 + i * 0.1 img = image_generation(strength) plt.subplot(5, 2, i + 1, title = "strength = %.1f" % strength) plt.imshow(img) plt.axis('off') # メモリー開放 if device == 'cuda': torch.cuda.empty_cache() elif device == 'mps': torch.mps.empty_cache() plt.tight_layout() plt.savefig('results/image_031.png') plt.close()
(sd_test) PS > python sd_031.py Seed: 12345678, Model: /StabilityMatrix/Data/Models/StableDiffusion/SD1.5/beautifulRealistic_brav5.safetensors prompt : 黒髪で短い髪の女性 → a woman with short black hair Fetching 11 files: 100%|███████████████████████████████| 11/11 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 6/6 [00:00<00:00, 15.31it/s] 100%|████████████████████████████████████████████| 3/3 [00:00<00:00, 16.70it/s] Fetching 11 files: 100%|███████████████████████████████| 11/11 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 6/6 [00:00<00:00, 26.95it/s] 100%|████████████████████████████████████████████| 6/6 [00:00<00:00, 26.25it/s] Fetching 11 files: 100%|███████████████████████████████| 11/11 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 6/6 [00:00<00:00, 34.83it/s] 100%|████████████████████████████████████████████| 9/9 [00:00<00:00, 25.62it/s] Fetching 11 files: 100%|███████████████████████████████| 11/11 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 6/6 [00:00<00:00, 34.48it/s] 100%|██████████████████████████████████████████| 12/12 [00:00<00:00, 25.21it/s] Fetching 11 files: 100%|███████████████████████████████| 11/11 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 6/6 [00:00<00:00, 22.46it/s] 100%|██████████████████████████████████████████| 15/15 [00:00<00:00, 24.61it/s] Fetching 11 files: 100%|████████████████████| 11/11 [00:00<00:00, 11032.36it/s] Loading pipeline components...: 100%|████████████| 6/6 [00:00<00:00, 34.50it/s] 100%|██████████████████████████████████████████| 18/18 [00:00<00:00, 24.45it/s] Fetching 11 files: 100%|███████████████████████████████| 11/11 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 6/6 [00:00<00:00, 29.71it/s] 100%|██████████████████████████████████████████| 21/21 [00:00<00:00, 24.55it/s] Fetching 11 files: 100%|███████████████████████████████| 11/11 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 6/6 [00:00<00:00, 34.32it/s] 100%|██████████████████████████████████████████| 24/24 [00:00<00:00, 24.17it/s] Fetching 11 files: 100%|███████████████████████████████| 11/11 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 6/6 [00:00<00:00, 34.67it/s] 100%|██████████████████████████████████████████| 27/27 [00:01<00:00, 24.19it/s] Fetching 11 files: 100%|███████████████████████████████| 11/11 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 6/6 [00:00<00:00, 23.52it/s] 100%|██████████████████████████████████████████| 30/30 [00:01<00:00, 24.25it/s]
プロンプト | 日本語入力 | 自動英訳 |
① | 黒髪で短い髪の女性 | a woman with short black hair |
② | テラスでコーヒーを飲む金髪の女性 | Blonde drinking coffee on the terrace |
## sd_032.py 画像から画像生成 プロンプトの重要度(guidance_scale) ## model: beautifulRealistic_brav5.safetensors import torch from PIL import Image from diffusers import StableDiffusionImg2ImgPipeline,DPMSolverMultistepScheduler, logging from translate import Translator import matplotlib.pyplot as plt logging.set_verbosity_error() # 画像生成 def image_generation(g_scale): # パイプラインを作成 pipeline = StableDiffusionImg2ImgPipeline.from_single_file( model_path, torch_dtype = torch.float16, ).to(device) # スケジューラ設定 pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) # Generatorオブジェクト作成 generator = torch.Generator(device).manual_seed(seed) # 画像を生成 img = pipeline( prompt = prompt, image = src_image, num_inference_steps = 30, guidance_scale = g_scale, strength = 0.5, generator = generator ).images[0] return img # モデルフォルダーのパス model_path = "/StabilityMatrix/Data/Models/StableDiffusion/SD1.5/beautifulRealistic_brav5.safetensors" image_path = "images/kaisendon.jpg" # GPUを使う場合は"cuda" 使わない場合は"cpu" device = 'cuda' # seed 値 seed = 12345678 # プロンプト trans = Translator('en','ja').translate prompt_jp = 'ラーメン' #prompt_jp = '鰻丼' prompt = trans(prompt_jp) src_image = Image.open(image_path) print(f'Seed: {seed}, Model: {model_path}') print(f'prompt : {prompt_jp} → {prompt}') # 複数画像を生成 plt.figure(figsize = [6, 9.5], dpi = 100) for i in range(6): img = image_generation(i * 2) plt.subplot(3, 2, i + 1, title = 'guidance_scale = %d' % (i * 2)) plt.imshow(img) plt.axis('off') # メモリー開放 if device == 'cuda': torch.cuda.empty_cache() elif device == 'mps': torch.mps.empty_cache() plt.tight_layout() plt.savefig('results/image_032.png') plt.close()
(sd_test) PS > python sd_032.py Seed: 12345678, Model: /StabilityMatrix/Data/Models/StableDiffusion/SD1.5/beautifulRealistic_brav5.safetensors prompt : ラーメン → Ramen Fetching 11 files: 100%|███████████████████████████████| 11/11 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 6/6 [00:00<00:00, 14.86it/s] 100%|██████████████████████████████████████████| 15/15 [00:02<00:00, 7.26it/s] Fetching 11 files: 100%|█████████████████████| 11/11 [00:00<00:00, 8801.48it/s] Loading pipeline components...: 100%|████████████| 6/6 [00:00<00:00, 33.02it/s] 100%|██████████████████████████████████████████| 15/15 [00:03<00:00, 3.87it/s] Fetching 11 files: 100%|███████████████████████████████| 11/11 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 6/6 [00:00<00:00, 33.53it/s] 100%|██████████████████████████████████████████| 15/15 [00:03<00:00, 3.87it/s] Fetching 11 files: 100%|███████████████████████████████| 11/11 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 6/6 [00:00<00:00, 33.18it/s] 100%|██████████████████████████████████████████| 15/15 [00:03<00:00, 3.86it/s] Fetching 11 files: 100%|███████████████████████████████| 11/11 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 6/6 [00:00<00:00, 22.71it/s] 100%|██████████████████████████████████████████| 15/15 [00:03<00:00, 3.86it/s] Fetching 11 files: 100%|███████████████████████████████| 11/11 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 6/6 [00:00<00:00, 33.00it/s] 100%|██████████████████████████████████████████| 15/15 [00:03<00:00, 3.86it/s]
プロンプト | 日本語入力 | 自動英訳 |
① | ラーメン | Ramen |
② | 鰻丼 | Eel Rice Bowl |
## sd_033.py【SDXL】モデル合成(refiner) ## model: animexlXuebimix_v60LCM.safetensors ## fudukiMix_v20.safetensors import torch from PIL import Image from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, EulerAncestralDiscreteScheduler, logging from translate import Translator import matplotlib.pyplot as plt logging.set_verbosity_error() # モデルフォルダーのパス model_base_path = "/StabilityMatrix/Data/Models/StableDiffusion/animexlXuebimix_v60LCM.safetensors" model_ref_path = "/StabilityMatrix/Data/Models/StableDiffusion/fudukiMix_v20.safetensors" # GPUを使う場合は"cuda" 使わない場合は"cpu" device = 'cuda' # seed 値 seed = 12345678 # ベースモデルのパイプライン pipe_base = StableDiffusionXLPipeline.from_single_file( model_base_path, torch_dtype = torch.float16 ).to(device) # スケジューラー設定 pipe_base.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_base.scheduler.config) # Generatorオブジェクト作成 generator = torch.Generator(device).manual_seed(seed) # リファイナーモデルのパイプライン pipe_ref = StableDiffusionXLImg2ImgPipeline.from_single_file( model_ref_path, torch_dtype = torch.float16, scheduler = pipe_base.scheduler # スケジューラーを統一 ).to(device) # プロンプト trans = Translator('en','ja').translate prompt_jp = '猫を抱いている短い髪のの女性' prompt = trans(prompt_jp) print(f'Seed: {seed}') print(f'Model1: {model_base_path}') print(f'Model2: {model_ref_path}') print(f'prompt : {prompt_jp} → {prompt}') # ベースモデルで画像生成 img0 = pipe_base( prompt, num_inference_steps = 20, generator = generator, denoising_end = 0.4, # 途中で生成をやめると指定 output_type = 'latent' # 出力を潜在空間と指定 ).images # リファイナーモデルで画像生成 img = pipe_ref( prompt, image = img0, num_inference_steps=20, generator = generator, denoising_start=0.4, # 生成を途中から続けると指定 ).images[0] img.save('results/image_033.png')
(sd_test) PS > python sd_033.py Fetching 17 files: 100%|███████████████████████████████| 17/17 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 7/7 [00:01<00:00, 4.16it/s] Fetching 17 files: 100%|████████████████████| 17/17 [00:00<00:00, 17009.34it/s] Loading pipeline components...: 100%|████████████| 7/7 [00:01<00:00, 6.38it/s] Seed: 12345678 Model1: /StabilityMatrix/Data/Models/StableDiffusion/animexlXuebimix_v60LCM.safetensors Model2: /StabilityMatrix/Data/Models/StableDiffusion/fudukiMix_v20.safetensors prompt : 猫を抱いている短い髪のの女性 → a short-haired woman holding a cat 100%|████████████████████████████████████████████| 8/8 [02:04<00:00, 15.57s/it] 100%|██████████████████████████████████████████| 12/12 [03:47<00:00, 18.99s/it]
## sd_034.py【SDXL】モデル合成(refiner)2 パラメータ比較 ## model: animexlXuebimix_v60LCM.safetensors ## fudukiMix_v20.safetensors import torch from PIL import Image from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, EulerAncestralDiscreteScheduler, logging from translate import Translator import matplotlib.pyplot as plt logging.set_verbosity_error() # 画像生成 def image_generation(sep): # ベースモデルのパイプライン pipe_base = StableDiffusionXLPipeline.from_single_file( model_base_path, torch_dtype = torch.float16 ).to(device) # スケジューラー設定 pipe_base.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_base.scheduler.config) # リファイナーモデルのパイプライン pipe_ref = StableDiffusionXLImg2ImgPipeline.from_single_file( model_ref_path, torch_dtype = torch.float16, scheduler = pipe_base.scheduler # スケジューラーを統一 ).to(device) # Generatorオブジェクト作成 generator = torch.Generator(device).manual_seed(seed) # ベースモデルで画像生成 img0 = pipe_base( prompt, num_inference_steps = 20, generator = generator, denoising_end = sep, # 途中で生成をやめると指定 output_type = 'latent' # 出力を潜在空間と指定 ).images # リファイナーモデルで画像生成 img = pipe_ref( prompt, image = img0, num_inference_steps = 20, generator = generator, denoising_start = sep, # 生成を途中から続けると指定 ).images[0] return img # モデルフォルダーのパス model_base_path = "/StabilityMatrix/Data/Models/StableDiffusion/animexlXuebimix_v60LCM.safetensors" model_ref_path = "/StabilityMatrix/Data/Models/StableDiffusion/fudukiMix_v20.safetensors" # GPUを使う場合は"cuda" 使わない場合は"cpu" device = 'cuda' # seed 値 seed = 12345678 # プロンプト trans = Translator('en','ja').translate prompt_jp = '庭で兎と遊んでいる女性' prompt = trans(prompt_jp) print(f'Seed: {seed}') print(f'Model1: {model_base_path}') print(f'Model2: {model_ref_path}') print(f'prompt : {prompt_jp} → {prompt}') # 複数画像を生成 plt.figure(figsize = [6, 12.5], dpi = 100) for i in range(8): sep = 0.1 + 0.1 * i img = image_generation(sep) plt.subplot(4, 2, i + 1, title = '%.1f' % sep) plt.imshow(img) plt.axis('off') # メモリー開放 if device == 'cuda': torch.cuda.empty_cache() elif device == 'mps': torch.mps.empty_cache() plt.tight_layout(pad = 0.5) plt.savefig('results/image_034.png') plt.close()
(sd_test) PS > python sd_034.py Seed: 12345678 Model1: /StabilityMatrix/Data/Models/StableDiffusion/animexlXuebimix_v60LCM.safetensors Model2: /StabilityMatrix/Data/Models/StableDiffusion/fudukiMix_v20.safetensors prompt : 庭で兎と遊んでいる女性 → Woman playing with a rabbit in the garden Fetching 17 files: 100%|███████████████████████████████| 17/17 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 7/7 [00:00<00:00, 8.33it/s] Fetching 17 files: 100%|████████████████████| 17/17 [00:00<00:00, 16989.08it/s] Loading pipeline components...: 100%|████████████| 7/7 [00:00<00:00, 14.65it/s] 100%|████████████████████████████████████████████| 2/2 [00:22<00:00, 11.01s/it] 100%|██████████████████████████████████████████| 18/18 [05:08<00:00, 17.14s/it] Fetching 17 files: 100%|███████████████████████████████| 17/17 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 7/7 [00:00<00:00, 14.60it/s] Fetching 17 files: 100%|████████████████████| 17/17 [00:00<00:00, 17021.52it/s] Loading pipeline components...: 100%|████████████| 7/7 [00:00<00:00, 11.85it/s] 100%|████████████████████████████████████████████| 4/4 [00:52<00:00, 13.06s/it] 100%|██████████████████████████████████████████| 16/16 [04:44<00:00, 17.77s/it] Fetching 17 files: 100%|███████████████████████████████| 17/17 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 7/7 [00:01<00:00, 6.44it/s] Fetching 17 files: 100%|████████████████████| 17/17 [00:00<00:00, 15972.93it/s] Loading pipeline components...: 100%|████████████| 7/7 [00:01<00:00, 5.16it/s] 100%|████████████████████████████████████████████| 6/6 [01:31<00:00, 15.20s/it] 100%|██████████████████████████████████████████| 14/14 [04:14<00:00, 18.19s/it] Fetching 17 files: 100%|█████████████████████| 17/17 [00:00<00:00, 5665.73it/s] Loading pipeline components...: 100%|████████████| 7/7 [00:01<00:00, 6.50it/s] Fetching 17 files: 100%|████████████████████| 17/17 [00:00<00:00, 16876.49it/s] Loading pipeline components...: 100%|████████████| 7/7 [00:01<00:00, 6.68it/s] 100%|████████████████████████████████████████████| 8/8 [01:52<00:00, 14.07s/it] 100%|██████████████████████████████████████████| 12/12 [03:31<00:00, 17.66s/it] Fetching 17 files: 100%|███████████████████████████████| 17/17 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 7/7 [00:01<00:00, 5.73it/s] Fetching 17 files: 100%|█████████████████████| 17/17 [00:00<00:00, 8408.39it/s] Loading pipeline components...: 100%|████████████| 7/7 [00:01<00:00, 6.37it/s] 100%|██████████████████████████████████████████| 10/10 [02:25<00:00, 14.54s/it] 100%|██████████████████████████████████████████| 10/10 [03:42<00:00, 22.20s/it] Fetching 17 files: 100%|███████████████████████████████| 17/17 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 7/7 [00:00<00:00, 7.43it/s] Fetching 17 files: 100%|███████████████████████████████| 17/17 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 7/7 [00:01<00:00, 5.48it/s] 100%|██████████████████████████████████████████| 12/12 [02:55<00:00, 14.66s/it] 100%|████████████████████████████████████████████| 8/8 [02:14<00:00, 16.78s/it] Fetching 17 files: 100%|████████████████████| 17/17 [00:00<00:00, 17058.17it/s] Loading pipeline components...: 100%|████████████| 7/7 [00:00<00:00, 7.51it/s] Fetching 17 files: 100%|█████████████████████| 17/17 [00:00<00:00, 7249.20it/s] Loading pipeline components...: 100%|████████████| 7/7 [00:01<00:00, 6.62it/s] 100%|██████████████████████████████████████████| 14/14 [03:20<00:00, 14.31s/it] 100%|████████████████████████████████████████████| 6/6 [01:38<00:00, 16.38s/it] Fetching 17 files: 100%|█████████████████████| 17/17 [00:00<00:00, 5674.74it/s] Loading pipeline components...: 100%|████████████| 7/7 [00:01<00:00, 6.62it/s] Fetching 17 files: 100%|███████████████████████████████| 17/17 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 7/7 [00:01<00:00, 6.62it/s] 100%|██████████████████████████████████████████| 16/16 [03:50<00:00, 14.40s/it] 100%|████████████████████████████████████████████| 4/4 [01:02<00:00, 15.63s/it]
imgl2 = torch.HalfTensor(np.array(img1).transpose(2, 0, 1)[None,:] / 255).to(device) imgl2 = pipe.vae.encode(imgl2).latent_dist.sample() * pipe.vae.config.scaling_factor
## sd_035.py 潜在空間の変換(latent) ## model: animePastelDream_softBakedVae.safetensors import torch from PIL import Image from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler, logging from translate import Translator import numpy as np import matplotlib.pyplot as plt from PIL import Image logging.set_verbosity_error() # モデルフォルダーのパス model_path = "/StabilityMatrix/Data/Models/StableDiffusion/SD1.5/animePastelDream_softBakedVae.safetensors" # GPUを使う場合は"cuda" 使わない場合は"cpu" device = 'cuda' # seed 値 seed = 12345678 # パイプラインを作成 pipeline = StableDiffusionPipeline.from_single_file( model_path, torch_dtype = torch.float16 ).to(device) # スケジューラー設定 pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config) # Generatorオブジェクト作成 generator = torch.Generator(device).manual_seed(seed) # プロンプト trans = Translator('en','ja').translate prompt_jp = '庭で兎と遊んでいる女性' prompt = trans(prompt_jp) print(f'Seed: {seed} Model: {model_path}') print(f'prompt : {prompt_jp} → {prompt}') # 画像生成(潜在空間) img_latent = pipeline( prompt = prompt, num_inference_steps = 20, generator = generator, output_type='latent' ).images print(f'latent.shape = {img_latent.shape}') # torch.Size([1, 4, 64, 64]) # 潜在空間を画像として出力 imgl = np.float32(img_latent[0].cpu()).transpose(1, 2, 0) plt.figure(figsize=[6, 6],dpi = 100) plt.imshow((imgl - imgl.min()) / (imgl.max() - imgl.min())) plt.tight_layout() plt.savefig("results/image_035a.png") plt.close() # ピクセル空間に変換して出力 img1 = pipeline.vae.decode(img_latent / pipeline.vae.config.scaling_factor) img1 = img1.sample[0].detach().cpu().numpy().transpose(1, 2, 0) img1 = Image.fromarray(np.uint8(np.clip(img1 * 0.5 + 0.5, 0, 1) * 255)) img1.save("results/image_035.png")
(sd_test) PS > python sd_035.py Fetching 11 files: 100%|███████████████████████████████| 11/11 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 6/6 [00:01<00:00, 3.12it/s] Seed: 12345678 Model: /StabilityMatrix/Data/Models/StableDiffusion/SD1.5/animePastelDream_softBakedVae.safetensors prompt : 庭で兎と遊んでいる女性 → Woman playing with a rabbit in the garden 100%|██████████████████████████████████████████| 20/20 [00:01<00:00, 15.95it/s] latent.shape = torch.Size([1, 4, 64, 64])
## sd_036.py 元画像を4倍拡大(x4 upscaler ) ## model: stabilityai/stable-diffusion-x4-upscaler import torch from PIL import Image from diffusers import StableDiffusionUpscalePipeline, logging logging.set_verbosity_error() # モデルフォルダーのパス model_path = "stabilityai/stable-diffusion-x4-upscaler" #image_path = "images/uptest_128x128.png" image_path = "images/uptest_256x256.png" # GPUを使う場合は"cuda" 使わない場合は"cpu" device = 'cuda' # seed 値 seed = 12345678 # パイプラインを作成 pipeline = StableDiffusionUpscalePipeline.from_pretrained( model_path, torch_dtype = torch.float16, ).to(device) # プロンプト prompt = '' # 元画像の読み込み src_image = Image.open(image_path) # Generatorオブジェクト作成 generator = torch.Generator(device).manual_seed(seed) print(f'Seed: {seed}, Model: {model_path}') print(f'prompt : {prompt}') # 画像を生成 image = pipeline( prompt = prompt, image = src_image, num_inference_steps = 20, generator = generator ).images[0] image.save("results/image_036.png")
(sd_test) PS > python sd_036.py Loading pipeline components...: 100%|████████████| 6/6 [00:01<00:00, 3.95it/s] Seed: 12345678, Model: stabilityai/stable-diffusion-x4-upscaler prompt : 100%|██████████████████████████████████████████| 20/20 [00:04<00:00, 4.71it/s]
## sd_037.py 潜在空間で2倍拡大(x2 latent upscaler) import torch from diffusers import StableDiffusionPipeline, StableDiffusionLatentUpscalePipeline, logging from translate import Translator logging.set_verbosity_error() # モデルのフォルダーのパス model_path = "/StabilityMatrix/Data/Models/StableDiffusion/SD1.5/v1-5-pruned-emaonly.safetensors" # GPUを使う場合は"cuda" 使わない場合は"cpu" device = 'cuda' # seed 値 seed = 12345678 # パイプラインを作成 pipeline = StableDiffusionPipeline.from_single_file(model_path).to(device) # 2番目のパイプライン pipeline_x2 = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler', torch_dtype=torch.float16, ).to(device) # プロンプト trans = Translator('en','ja').translate prompt_jp = '満開の蘭' prompt = trans(prompt_jp) # Generatorオブジェクト作成 generator = torch.Generator(device).manual_seed(seed) print(f'Seed: {seed}, Model: {model_path}') print(f'prompt : {prompt_jp} → {prompt}') # 画像を生成 img0 = pipeline( prompt=prompt, num_inference_steps = 20, generator = generator, output_type = 'latent' ).images image = pipeline_x2( '', img0, num_inference_steps=20, ).images[0] image.save("results/sd_037.png") # 途中の生成画像の保存 from PIL import Image import numpy as np img1 = pipeline.vae.decode(img0 / pipeline.vae.config.scaling_factor) img1 = img1.sample[0].detach().cpu().numpy().transpose(1, 2, 0) img1 = np.uint8(np.clip(img1 * 0.5 + 0.5, 0,1) * 255) Image.fromarray(img1).save('results/sd_037_512.png')
(sd_test) PS > python sd_037.py Fetching 11 files: 100%|███████████████████████████████| 11/11 [00:00<?, ?it/s] Loading pipeline components...: 100%|████████████| 6/6 [00:00<00:00, 8.84it/s] Loading pipeline components...: 100%|████████████| 5/5 [00:01<00:00, 4.24it/s] Seed: 12345678, Model: /StabilityMatrix/Data/Models/StableDiffusion/SD1.5/v1-5-pruned-emaonly.safetensors prompt : 満開の蘭 → Orchid in full bloom 100%|██████████████████████████████████████████| 20/20 [00:02<00:00, 7.19it/s] 100%|██████████████████████████████████████████| 20/20 [00:01<00:00, 12.08it/s]
## sd_038.py 特定の部分だけ修正(inpaint) import torch from PIL import Image from diffusers import StableDiffusionInpaintPipeline, logging from translate import Translator logging.set_verbosity_error() # モデルのフォルダーのパス model_path = 'runwayml/stable-diffusion-inpainting' # モデル image_path = 'images/sd_038_test.png' # 元画像 mask_path = 'images/sd_038_test_mask.png' # マスク画像 # GPUを使う場合は"cuda" 使わない場合は"cpu" device = 'cuda' # seed 値 seed = 12345678 # パイプラインを作成 pipeline = StableDiffusionInpaintPipeline.from_pretrained( model_path, torch_dtype = torch.float16, variant = 'fp16' ).to(device) # プロンプト trans = Translator('en','ja').translate prompt_jp = 'こっちを見て微笑んでいる女の子' prompt = trans(prompt_jp) # Generatorオブジェクト作成 generator = torch.Generator(device).manual_seed(seed) img0 = Image.open(image_path) img_mask = Image.open(mask_path) print(f'Seed: {seed}') print(f'prompt : {prompt_jp} → {prompt}') print(f'Model : {model_path}') print(f'source : {image_path}') print(f'mask : {mask_path}') # 画像を生成 image = pipeline( prompt=prompt, image = img0, mask_image = img_mask, num_inference_steps = 20, generator = generator, ).images[0] image.save("results/sd_038.png")
(sd_test) PS > python sd_038.py Loading pipeline components...: 100%|████████████| 6/6 [00:00<00:00, 19.11it/s] Seed: 12345678 prompt : こっちを見て微笑んでいる女の子 → A girl smiling at me Model : runwayml/stable-diffusion-inpainting source : images/sd_038_test.png mask : images/sd_038_test_mask.png 100%|██████████████████████████████████████████| 20/20 [00:01<00:00, 15.12it/s]